feat: add ADE, Triage, and Symptom-Disease training pipelines

New tasks supported:
- task=ade: Adverse Drug Event classification (ADE Corpus V2, 30K samples)
- task=triage: Medical Triage classification (urgency levels)
- task=symptom_disease: Symptom-to-Disease prediction (40+ diseases)

All use HuggingFace datasets, Bio_ClinicalBERT, and S3 model storage.
This commit is contained in:
2026-02-03 16:20:55 +00:00
parent f8a0e00a7f
commit 0bf3837e78
2 changed files with 847 additions and 11 deletions

View File

@@ -0,0 +1,376 @@
"""
Healthcare ML Training Pipelines
Multi-task training pipelines for:
- Adverse Drug Event (ADE) Classification
- Medical Triage Classification
- Symptom-to-Disease Prediction
- Drug-Drug Interaction (DDI) Classification
All use RunPod serverless GPU infrastructure.
"""
from kfp import dsl
from kfp import compiler
# ============================================================================
# ADE (Adverse Drug Event) Classification Pipeline
# ============================================================================
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["requests"]
)
def train_ade_model(
runpod_api_key: str,
runpod_endpoint: str,
model_name: str,
max_samples: int,
epochs: int,
batch_size: int,
s3_bucket: str,
aws_access_key_id: str,
aws_secret_access_key: str,
aws_session_token: str,
) -> dict:
"""Train ADE classifier on RunPod serverless GPU."""
import requests
import time
response = requests.post(
f"https://api.runpod.ai/v2/{runpod_endpoint}/run",
headers={"Authorization": f"Bearer {runpod_api_key}"},
json={
"input": {
"task": "ade",
"model_name": model_name,
"max_samples": max_samples,
"epochs": epochs,
"batch_size": batch_size,
"eval_split": 0.1,
"s3_bucket": s3_bucket,
"s3_prefix": "ade-models/bert",
"aws_access_key_id": aws_access_key_id,
"aws_secret_access_key": aws_secret_access_key,
"aws_session_token": aws_session_token,
}
}
)
job_id = response.json()["id"]
print(f"RunPod job submitted: {job_id}")
# Poll for completion
while True:
status = requests.get(
f"https://api.runpod.ai/v2/{runpod_endpoint}/status/{job_id}",
headers={"Authorization": f"Bearer {runpod_api_key}"}
).json()
if status["status"] == "COMPLETED":
return status["output"]
elif status["status"] == "FAILED":
raise Exception(f"Training failed: {status}")
time.sleep(10)
@dsl.pipeline(name="ade-classification-pipeline")
def ade_classification_pipeline(
runpod_api_key: str,
runpod_endpoint: str = "k57do7afav01es",
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
max_samples: int = 10000,
epochs: int = 3,
batch_size: int = 16,
s3_bucket: str = "",
aws_access_key_id: str = "",
aws_secret_access_key: str = "",
aws_session_token: str = "",
):
"""
Adverse Drug Event Classification Pipeline
Trains Bio_ClinicalBERT on ADE Corpus V2 (30K samples)
Binary classification: ADE present / No ADE
"""
train_task = train_ade_model(
runpod_api_key=runpod_api_key,
runpod_endpoint=runpod_endpoint,
model_name=model_name,
max_samples=max_samples,
epochs=epochs,
batch_size=batch_size,
s3_bucket=s3_bucket,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
# ============================================================================
# Medical Triage Classification Pipeline
# ============================================================================
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["requests"]
)
def train_triage_model(
runpod_api_key: str,
runpod_endpoint: str,
model_name: str,
max_samples: int,
epochs: int,
batch_size: int,
s3_bucket: str,
aws_access_key_id: str,
aws_secret_access_key: str,
aws_session_token: str,
) -> dict:
"""Train Medical Triage classifier on RunPod."""
import requests
import time
response = requests.post(
f"https://api.runpod.ai/v2/{runpod_endpoint}/run",
headers={"Authorization": f"Bearer {runpod_api_key}"},
json={
"input": {
"task": "triage",
"model_name": model_name,
"max_samples": max_samples,
"epochs": epochs,
"batch_size": batch_size,
"eval_split": 0.1,
"s3_bucket": s3_bucket,
"s3_prefix": "triage-models/bert",
"aws_access_key_id": aws_access_key_id,
"aws_secret_access_key": aws_secret_access_key,
"aws_session_token": aws_session_token,
}
}
)
job_id = response.json()["id"]
print(f"RunPod job submitted: {job_id}")
while True:
status = requests.get(
f"https://api.runpod.ai/v2/{runpod_endpoint}/status/{job_id}",
headers={"Authorization": f"Bearer {runpod_api_key}"}
).json()
if status["status"] == "COMPLETED":
return status["output"]
elif status["status"] == "FAILED":
raise Exception(f"Training failed: {status}")
time.sleep(10)
@dsl.pipeline(name="triage-classification-pipeline")
def triage_classification_pipeline(
runpod_api_key: str,
runpod_endpoint: str = "k57do7afav01es",
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
max_samples: int = 5000,
epochs: int = 3,
batch_size: int = 8,
s3_bucket: str = "",
aws_access_key_id: str = "",
aws_secret_access_key: str = "",
aws_session_token: str = "",
):
"""
Medical Triage Classification Pipeline
Trains classifier for ER triage urgency levels.
Multi-class: Emergency, Urgent, Standard, etc.
"""
train_task = train_triage_model(
runpod_api_key=runpod_api_key,
runpod_endpoint=runpod_endpoint,
model_name=model_name,
max_samples=max_samples,
epochs=epochs,
batch_size=batch_size,
s3_bucket=s3_bucket,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
# ============================================================================
# Symptom-to-Disease Classification Pipeline
# ============================================================================
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["requests"]
)
def train_symptom_disease_model(
runpod_api_key: str,
runpod_endpoint: str,
model_name: str,
max_samples: int,
epochs: int,
batch_size: int,
s3_bucket: str,
aws_access_key_id: str,
aws_secret_access_key: str,
aws_session_token: str,
) -> dict:
"""Train Symptom-to-Disease classifier on RunPod."""
import requests
import time
response = requests.post(
f"https://api.runpod.ai/v2/{runpod_endpoint}/run",
headers={"Authorization": f"Bearer {runpod_api_key}"},
json={
"input": {
"task": "symptom_disease",
"model_name": model_name,
"max_samples": max_samples,
"epochs": epochs,
"batch_size": batch_size,
"eval_split": 0.1,
"s3_bucket": s3_bucket,
"s3_prefix": "symptom-disease-models/bert",
"aws_access_key_id": aws_access_key_id,
"aws_secret_access_key": aws_secret_access_key,
"aws_session_token": aws_session_token,
}
}
)
job_id = response.json()["id"]
print(f"RunPod job submitted: {job_id}")
while True:
status = requests.get(
f"https://api.runpod.ai/v2/{runpod_endpoint}/status/{job_id}",
headers={"Authorization": f"Bearer {runpod_api_key}"}
).json()
if status["status"] == "COMPLETED":
return status["output"]
elif status["status"] == "FAILED":
raise Exception(f"Training failed: {status}")
time.sleep(10)
@dsl.pipeline(name="symptom-disease-classification-pipeline")
def symptom_disease_pipeline(
runpod_api_key: str,
runpod_endpoint: str = "k57do7afav01es",
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
max_samples: int = 5000,
epochs: int = 3,
batch_size: int = 16,
s3_bucket: str = "",
aws_access_key_id: str = "",
aws_secret_access_key: str = "",
aws_session_token: str = "",
):
"""
Symptom-to-Disease Classification Pipeline
Predicts disease from symptom descriptions.
Multi-class: 40+ disease categories
"""
train_task = train_symptom_disease_model(
runpod_api_key=runpod_api_key,
runpod_endpoint=runpod_endpoint,
model_name=model_name,
max_samples=max_samples,
epochs=epochs,
batch_size=batch_size,
s3_bucket=s3_bucket,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
# ============================================================================
# Full Healthcare Training Pipeline (All Tasks)
# ============================================================================
@dsl.pipeline(name="healthcare-multi-task-pipeline")
def healthcare_multi_task_pipeline(
runpod_api_key: str,
runpod_endpoint: str = "k57do7afav01es",
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
s3_bucket: str = "",
aws_access_key_id: str = "",
aws_secret_access_key: str = "",
aws_session_token: str = "",
):
"""
Train all healthcare models in parallel.
Outputs:
- ADE classifier (s3://bucket/ade-models/...)
- Triage classifier (s3://bucket/triage-models/...)
- Symptom-Disease classifier (s3://bucket/symptom-disease-models/...)
"""
# Run all training tasks in parallel
ade_task = train_ade_model(
runpod_api_key=runpod_api_key,
runpod_endpoint=runpod_endpoint,
model_name=model_name,
max_samples=10000,
epochs=3,
batch_size=16,
s3_bucket=s3_bucket,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
triage_task = train_triage_model(
runpod_api_key=runpod_api_key,
runpod_endpoint=runpod_endpoint,
model_name=model_name,
max_samples=5000,
epochs=3,
batch_size=8,
s3_bucket=s3_bucket,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
symptom_task = train_symptom_disease_model(
runpod_api_key=runpod_api_key,
runpod_endpoint=runpod_endpoint,
model_name=model_name,
max_samples=5000,
epochs=3,
batch_size=16,
s3_bucket=s3_bucket,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
if __name__ == "__main__":
# Compile pipelines
compiler.Compiler().compile(
ade_classification_pipeline,
"ade_classification_pipeline.yaml"
)
compiler.Compiler().compile(
triage_classification_pipeline,
"triage_classification_pipeline.yaml"
)
compiler.Compiler().compile(
symptom_disease_pipeline,
"symptom_disease_pipeline.yaml"
)
compiler.Compiler().compile(
healthcare_multi_task_pipeline,
"healthcare_multi_task_pipeline.yaml"
)
print("All pipelines compiled!")