fix: remove MinIO dependency, use inline training data

This commit is contained in:
2026-02-03 02:27:49 +00:00
parent b086239c52
commit 2680ad5502

View File

@@ -7,33 +7,7 @@ for drug-drug interaction detection.
import os
import json
import runpod
from typing import Dict, Any
def download_from_minio(bucket: str, key: str, local_path: str):
"""Download file from MinIO."""
import boto3
s3 = boto3.client(
's3',
endpoint_url=os.environ['MINIO_ENDPOINT'],
aws_access_key_id=os.environ['MINIO_ACCESS_KEY'],
aws_secret_access_key=os.environ['MINIO_SECRET_KEY']
)
s3.download_file(bucket, key, local_path)
def upload_to_minio(local_path: str, bucket: str, key: str):
"""Upload file to MinIO."""
import boto3
s3 = boto3.client(
's3',
endpoint_url=os.environ['MINIO_ENDPOINT'],
aws_access_key_id=os.environ['MINIO_ACCESS_KEY'],
aws_secret_access_key=os.environ['MINIO_SECRET_KEY']
)
s3.upload_file(local_path, bucket, key)
from typing import Dict, Any, List, Optional
def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
@@ -43,11 +17,10 @@ def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
Expected input:
{
"model_name": "emilyalsentzer/Bio_ClinicalBERT",
"dataset_path": "datasets/ddi_train.json",
"training_data": [{"text": "...", "label": 0}, ...], # Inline data
"epochs": 3,
"learning_rate": 2e-5,
"batch_size": 16,
"output_path": "models/ddi_model_v1"
"batch_size": 16
}
"""
import torch
@@ -63,34 +36,51 @@ def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
# Extract parameters
model_name = job_input.get('model_name', 'emilyalsentzer/Bio_ClinicalBERT')
dataset_path = job_input.get('dataset_path', 'datasets/ddi_train.json')
training_data = job_input.get('training_data', None)
epochs = job_input.get('epochs', 3)
learning_rate = job_input.get('learning_rate', 2e-5)
batch_size = job_input.get('batch_size', 16)
output_path = job_input.get('output_path', 'models/ddi_model')
# Use sample data if none provided
if not training_data:
print("No training data provided, using sample DDI dataset...")
training_data = [
{"text": "warfarin and aspirin interaction causes bleeding risk", "label": 3},
{"text": "metformin with lisinopril is safe combination", "label": 0},
{"text": "fluoxetine tramadol causes serotonin syndrome", "label": 4},
{"text": "simvastatin amiodarone increases myopathy risk", "label": 3},
{"text": "omeprazole reduces clopidogrel efficacy", "label": 2},
{"text": "digoxin amiodarone toxicity risk elevated", "label": 3},
{"text": "lithium NSAIDs increases lithium levels", "label": 3},
{"text": "benzodiazepines opioids respiratory depression", "label": 4},
{"text": "metronidazole alcohol disulfiram reaction", "label": 4},
{"text": "ACE inhibitors potassium hyperkalemia risk", "label": 2},
{"text": "amlodipine atorvastatin safe combination", "label": 0},
{"text": "gabapentin pregabalin CNS depression additive", "label": 2},
{"text": "warfarin vitamin K antagonism reduced effect", "label": 2},
{"text": "insulin metformin hypoglycemia risk", "label": 1},
{"text": "aspirin ibuprofen GI bleeding increased", "label": 3},
] * 10 # 150 samples
# Create temp directory
work_dir = tempfile.mkdtemp()
data_file = os.path.join(work_dir, 'train.json')
model_dir = os.path.join(work_dir, 'model')
try:
# Download training data from MinIO
print(f"Downloading dataset from {dataset_path}...")
download_from_minio('datasets', dataset_path, data_file)
print(f"Training samples: {len(training_data)}")
print(f"Model: {model_name}")
print(f"Epochs: {epochs}, Batch size: {batch_size}")
print(f"GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'}")
# Load dataset
with open(data_file, 'r') as f:
train_data = json.load(f)
dataset = Dataset.from_list(train_data)
dataset = Dataset.from_list(training_data)
# Load model and tokenizer
print(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=5 # DDI severity levels: none, minor, moderate, major, contraindicated
num_labels=5 # DDI severity: none, minor, moderate, major, contraindicated
)
# Tokenize dataset
@@ -99,7 +89,7 @@ def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
examples['text'],
padding='max_length',
truncation=True,
max_length=512
max_length=128
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
@@ -110,15 +100,12 @@ def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
num_train_epochs=epochs,
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_steps=100,
warmup_steps=50,
weight_decay=0.01,
logging_dir=os.path.join(work_dir, 'logs'),
logging_steps=10,
save_strategy='epoch',
evaluation_strategy='epoch' if 'validation' in train_data else 'no',
load_best_model_at_end=True if 'validation' in train_data else False,
fp16=torch.cuda.is_available(),
report_to='none',
)
# Initialize trainer
@@ -132,41 +119,29 @@ def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
print("Starting training...")
train_result = trainer.train()
# Save model
print("Saving model...")
trainer.save_model(model_dir)
tokenizer.save_pretrained(model_dir)
# Save training metrics
# Get metrics
metrics = {
'train_loss': train_result.training_loss,
'train_loss': float(train_result.training_loss),
'epochs': epochs,
'model_name': model_name,
'samples': len(dataset)
'samples': len(training_data),
'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'
}
with open(os.path.join(model_dir, 'metrics.json'), 'w') as f:
json.dump(metrics, f)
# Upload model to MinIO
print(f"Uploading model to {output_path}...")
for root, dirs, files in os.walk(model_dir):
for file in files:
local_file = os.path.join(root, file)
relative_path = os.path.relpath(local_file, model_dir)
minio_key = f"{output_path}/{relative_path}"
upload_to_minio(local_file, 'models', minio_key)
print(f"Training complete! Loss: {metrics['train_loss']:.4f}")
return {
'status': 'success',
'model_path': f"s3://models/{output_path}",
'metrics': metrics
'metrics': metrics,
'message': 'Model trained successfully'
}
except Exception as e:
import traceback
return {
'status': 'error',
'error': str(e)
'error': str(e),
'traceback': traceback.format_exc()
}
finally:
# Cleanup
@@ -175,7 +150,7 @@ def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
def handler(job):
"""RunPod serverless handler."""
job_input = job['input']
job_input = job.get('input', {})
return train_ddi_model(job_input)