""" RunPod Serverless Handler for DDI Model Training Supports both BERT-style classification and LLM fine-tuning with LoRA. Default: Gemma 3 12B with QLoRA for DDI severity classification. """ import os import json import runpod from typing import Dict, Any, List, Optional # DDI severity labels DDI_LABELS = { 0: "no_interaction", 1: "minor", 2: "moderate", 3: "major", 4: "contraindicated" } LABEL_DESCRIPTIONS = { 0: "No clinically significant interaction", 1: "Minor interaction - minimal clinical significance", 2: "Moderate interaction - may require monitoring or dose adjustment", 3: "Major interaction - avoid combination if possible, high risk", 4: "Contraindicated - do not use together, life-threatening risk" } def get_ddi_training_data(max_samples: int = 5000) -> List[Dict[str, Any]]: """Generate DDI training data formatted for instruction tuning.""" import random random.seed(42) # Real drug interaction patterns based on clinical data ddi_patterns = [ # Contraindicated (4) {"drugs": ["fluoxetine", "tramadol"], "type": "serotonin syndrome risk", "label": 4}, {"drugs": ["fluoxetine", "phenelzine"], "type": "serotonin syndrome risk", "label": 4}, {"drugs": ["simvastatin", "itraconazole"], "type": "rhabdomyolysis risk", "label": 4}, {"drugs": ["methotrexate", "trimethoprim"], "type": "severe bone marrow suppression", "label": 4}, {"drugs": ["warfarin", "miconazole"], "type": "severe bleeding risk", "label": 4}, {"drugs": ["cisapride", "erythromycin"], "type": "QT prolongation cardiac arrest", "label": 4}, {"drugs": ["pimozide", "clarithromycin"], "type": "QT prolongation risk", "label": 4}, {"drugs": ["ergotamine", "ritonavir"], "type": "ergot toxicity risk", "label": 4}, {"drugs": ["sildenafil", "nitroglycerin"], "type": "severe hypotension", "label": 4}, {"drugs": ["linezolid", "sertraline"], "type": "serotonin syndrome", "label": 4}, {"drugs": ["maoi", "meperidine"], "type": "hypertensive crisis", "label": 4}, {"drugs": ["metronidazole", "disulfiram"], "type": "psychosis risk", "label": 4}, # Major (3) {"drugs": ["warfarin", "aspirin"], "type": "increased bleeding risk", "label": 3}, {"drugs": ["digoxin", "amiodarone"], "type": "digoxin toxicity elevated", "label": 3}, {"drugs": ["lithium", "ibuprofen"], "type": "lithium toxicity risk", "label": 3}, {"drugs": ["metformin", "iodinated contrast"], "type": "lactic acidosis risk", "label": 3}, {"drugs": ["potassium chloride", "lisinopril"], "type": "hyperkalemia risk", "label": 3}, {"drugs": ["oxycodone", "alprazolam"], "type": "respiratory depression", "label": 3}, {"drugs": ["theophylline", "ciprofloxacin"], "type": "theophylline toxicity", "label": 3}, {"drugs": ["phenytoin", "fluconazole"], "type": "phenytoin toxicity", "label": 3}, {"drugs": ["carbamazepine", "verapamil"], "type": "carbamazepine toxicity", "label": 3}, {"drugs": ["cyclosporine", "ketoconazole"], "type": "nephrotoxicity risk", "label": 3}, {"drugs": ["methotrexate", "ibuprofen"], "type": "methotrexate toxicity", "label": 3}, {"drugs": ["quinidine", "digoxin"], "type": "digoxin toxicity", "label": 3}, {"drugs": ["clopidogrel", "omeprazole"], "type": "reduced antiplatelet effect", "label": 3}, {"drugs": ["warfarin", "rifampin"], "type": "reduced anticoagulation", "label": 3}, {"drugs": ["dabigatran", "rifampin"], "type": "reduced anticoagulant effect", "label": 3}, # Moderate (2) {"drugs": ["simvastatin", "amlodipine"], "type": "increased statin exposure", "label": 2}, {"drugs": ["metformin", "cimetidine"], "type": "increased metformin levels", "label": 2}, {"drugs": ["levothyroxine", "calcium carbonate"], "type": "reduced thyroid absorption", "label": 2}, {"drugs": ["gabapentin", "aluminum hydroxide"], "type": "reduced gabapentin absorption", "label": 2}, {"drugs": ["furosemide", "gentamicin"], "type": "ototoxicity risk", "label": 2}, {"drugs": ["prednisone", "naproxen"], "type": "GI bleeding risk", "label": 2}, {"drugs": ["metoprolol", "verapamil"], "type": "bradycardia risk", "label": 2}, {"drugs": ["sertraline", "tramadol"], "type": "seizure threshold lowered", "label": 2}, {"drugs": ["losartan", "potassium supplements"], "type": "hyperkalemia risk", "label": 2}, {"drugs": ["alprazolam", "ketoconazole"], "type": "increased sedation", "label": 2}, {"drugs": ["atorvastatin", "grapefruit juice"], "type": "increased statin levels", "label": 2}, {"drugs": ["ciprofloxacin", "ferrous sulfate"], "type": "reduced antibiotic absorption", "label": 2}, {"drugs": ["warfarin", "acetaminophen"], "type": "slight INR increase", "label": 2}, {"drugs": ["insulin", "propranolol"], "type": "masked hypoglycemia", "label": 2}, {"drugs": ["digoxin", "spironolactone"], "type": "increased digoxin levels", "label": 2}, # Minor (1) {"drugs": ["aspirin", "ibuprofen"], "type": "reduced cardioprotection", "label": 1}, {"drugs": ["metformin", "vitamin B12"], "type": "reduced B12 absorption long-term", "label": 1}, {"drugs": ["amoxicillin", "ethinyl estradiol"], "type": "theoretical reduced efficacy", "label": 1}, {"drugs": ["omeprazole", "vitamin B12"], "type": "reduced absorption", "label": 1}, {"drugs": ["caffeine", "ciprofloxacin"], "type": "increased caffeine effect", "label": 1}, {"drugs": ["calcium carbonate", "ferrous sulfate"], "type": "timing interaction", "label": 1}, {"drugs": ["atorvastatin", "niacin"], "type": "monitoring recommended", "label": 1}, {"drugs": ["lisinopril", "aspirin"], "type": "possible reduced effect", "label": 1}, {"drugs": ["hydrochlorothiazide", "calcium"], "type": "hypercalcemia monitoring", "label": 1}, {"drugs": ["metoprolol", "clonidine"], "type": "withdrawal monitoring", "label": 1}, # No interaction (0) {"drugs": ["amlodipine", "atorvastatin"], "type": "safe combination", "label": 0}, {"drugs": ["metformin", "lisinopril"], "type": "complementary therapy", "label": 0}, {"drugs": ["omeprazole", "levothyroxine"], "type": "can be used together with spacing", "label": 0}, {"drugs": ["aspirin", "atorvastatin"], "type": "standard combination", "label": 0}, {"drugs": ["metoprolol", "lisinopril"], "type": "common combination", "label": 0}, {"drugs": ["gabapentin", "acetaminophen"], "type": "no interaction", "label": 0}, {"drugs": ["sertraline", "omeprazole"], "type": "generally safe", "label": 0}, {"drugs": ["metformin", "glipizide"], "type": "complementary", "label": 0}, {"drugs": ["hydrochlorothiazide", "lisinopril"], "type": "synergistic", "label": 0}, {"drugs": ["pantoprazole", "amlodipine"], "type": "no known interaction", "label": 0}, ] training_data = [] for pattern in ddi_patterns: drug1, drug2 = pattern["drugs"] interaction_type = pattern["type"] label = pattern["label"] label_name = DDI_LABELS[label] label_desc = LABEL_DESCRIPTIONS[label] # Create instruction-tuning format prompts = [ f"Analyze the drug-drug interaction between {drug1} and {drug2}.", f"What is the severity of combining {drug1} with {drug2}?", f"A patient is taking {drug1}. They need to start {drug2}. Assess the interaction risk.", f"Evaluate the interaction: {drug1} + {drug2}", f"Drug interaction check: {drug1} and {drug2}", ] for prompt in prompts: response = f"Severity: {label_name.upper()}\nInteraction: {interaction_type}\nRecommendation: {label_desc}" training_data.append({ "instruction": prompt, "response": response, "label": label, "label_name": label_name }) # Shuffle and replicate to reach target size random.shuffle(training_data) while len(training_data) < max_samples: training_data.extend(training_data[:min(len(training_data), max_samples - len(training_data))]) return training_data[:max_samples] def format_for_gemma(example: Dict) -> str: """Format example for Gemma instruction tuning.""" return f"""user {example['instruction']} model {example['response']}""" def train_gemma_lora(job_input: Dict[str, Any]) -> Dict[str, Any]: """Train Gemma 3 with QLoRA for DDI classification.""" import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments, ) from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from trl import SFTTrainer from datasets import Dataset import tempfile import shutil # Parameters model_name = job_input.get('model_name', 'google/gemma-3-12b-it') max_samples = job_input.get('max_samples', 2000) epochs = job_input.get('epochs', 1) learning_rate = job_input.get('learning_rate', 2e-4) batch_size = job_input.get('batch_size', 4) lora_r = job_input.get('lora_r', 16) lora_alpha = job_input.get('lora_alpha', 32) max_seq_length = job_input.get('max_seq_length', 512) work_dir = tempfile.mkdtemp() try: print(f"GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'}") print(f"Model: {model_name}") print(f"LoRA r={lora_r}, alpha={lora_alpha}") print(f"Samples: {max_samples}, Epochs: {epochs}") # Load training data print("Loading DDI training data...") training_data = get_ddi_training_data(max_samples=max_samples) # Format for Gemma formatted_data = [{"text": format_for_gemma(ex)} for ex in training_data] dataset = Dataset.from_list(formatted_data) print(f"Dataset size: {len(dataset)}") # QLoRA config - 4-bit quantization bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) # Load model print(f"Loading {model_name} with 4-bit quantization...") model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" # Prepare for k-bit training model = prepare_model_for_kbit_training(model) # LoRA config lora_config = LoraConfig( r=lora_r, lora_alpha=lora_alpha, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, lora_config) model.print_trainable_parameters() # Training arguments training_args = TrainingArguments( output_dir=work_dir, num_train_epochs=epochs, per_device_train_batch_size=batch_size, gradient_accumulation_steps=4, learning_rate=learning_rate, weight_decay=0.01, warmup_ratio=0.1, logging_steps=10, save_strategy="no", bf16=True, gradient_checkpointing=True, optim="paged_adamw_8bit", report_to="none", max_grad_norm=0.3, ) # SFT Trainer trainer = SFTTrainer( model=model, train_dataset=dataset, args=training_args, peft_config=lora_config, processing_class=tokenizer, max_seq_length=max_seq_length, ) # Train print("Starting LoRA fine-tuning...") train_result = trainer.train() # Metrics metrics = { 'train_loss': float(train_result.training_loss), 'epochs': epochs, 'model_name': model_name, 'samples': len(training_data), 'lora_r': lora_r, 'lora_alpha': lora_alpha, 'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU', 'trainable_params': sum(p.numel() for p in model.parameters() if p.requires_grad), 'quantization': '4-bit QLoRA', } print(f"Training complete! Loss: {metrics['train_loss']:.4f}") return { 'status': 'success', 'metrics': metrics, 'message': f'Gemma 3 12B fine-tuned with QLoRA on DDI data' } except Exception as e: import traceback return { 'status': 'error', 'error': str(e), 'traceback': traceback.format_exc() } finally: shutil.rmtree(work_dir, ignore_errors=True) # Clear GPU memory if torch.cuda.is_available(): torch.cuda.empty_cache() def train_bert_classifier(job_input: Dict[str, Any]) -> Dict[str, Any]: """Train BERT-style classifier (original approach).""" import torch from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer ) from datasets import Dataset from sklearn.model_selection import train_test_split import tempfile import shutil model_name = job_input.get('model_name', 'emilyalsentzer/Bio_ClinicalBERT') max_samples = job_input.get('max_samples', 5000) epochs = job_input.get('epochs', 3) learning_rate = job_input.get('learning_rate', 2e-5) batch_size = job_input.get('batch_size', 16) eval_split = job_input.get('eval_split', 0.1) work_dir = tempfile.mkdtemp() try: print(f"GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'}") print(f"Model: {model_name}") # Get data in BERT format raw_data = get_ddi_training_data(max_samples=max_samples) training_data = [{"text": d["instruction"], "label": d["label"]} for d in raw_data] # Split if eval_split > 0: train_data, eval_data = train_test_split( training_data, test_size=eval_split, random_state=42, stratify=[d['label'] for d in training_data] ) else: train_data, eval_data = training_data, None train_dataset = Dataset.from_list(train_data) eval_dataset = Dataset.from_list(eval_data) if eval_data else None # Load model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=5 ) def tokenize(examples): return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=256) train_dataset = train_dataset.map(tokenize, batched=True) if eval_dataset: eval_dataset = eval_dataset.map(tokenize, batched=True) training_args = TrainingArguments( output_dir=work_dir, num_train_epochs=epochs, learning_rate=learning_rate, per_device_train_batch_size=batch_size, eval_strategy='epoch' if eval_dataset else 'no', save_strategy='no', fp16=torch.cuda.is_available(), report_to='none', ) def compute_metrics(eval_pred): from sklearn.metrics import accuracy_score, f1_score preds = eval_pred.predictions.argmax(-1) return { 'accuracy': accuracy_score(eval_pred.label_ids, preds), 'f1_weighted': f1_score(eval_pred.label_ids, preds, average='weighted'), } trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics if eval_dataset else None, ) train_result = trainer.train() metrics = { 'train_loss': float(train_result.training_loss), 'epochs': epochs, 'model_name': model_name, 'samples': len(train_data), 'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU', } if eval_dataset: eval_result = trainer.evaluate() metrics.update({ 'eval_accuracy': float(eval_result['eval_accuracy']), 'eval_f1_weighted': float(eval_result['eval_f1_weighted']), }) return {'status': 'success', 'metrics': metrics, 'message': 'BERT classifier trained'} except Exception as e: import traceback return {'status': 'error', 'error': str(e), 'traceback': traceback.format_exc()} finally: shutil.rmtree(work_dir, ignore_errors=True) def handler(job): """RunPod serverless handler.""" job_input = job.get('input', {}) # Choose training mode model_name = job_input.get('model_name', 'google/gemma-3-12b-it') use_lora = job_input.get('use_lora', True) # Auto-detect: use LoRA for large models if 'gemma' in model_name.lower() or 'llama' in model_name.lower() or 'mistral' in model_name.lower(): use_lora = True elif 'bert' in model_name.lower(): use_lora = False if use_lora: return train_gemma_lora(job_input) else: return train_bert_classifier(job_input) # RunPod serverless entrypoint runpod.serverless.start({'handler': handler})