# Healthcare ML Use Cases & Datasets Curated list of similar healthcare/biomedical use cases with publicly available datasets for training on RunPod. --- ## 🔥 Priority 1: Ready to Train ### 1. Adverse Drug Event Classification **Dataset:** `Lots-of-LoRAs/task1495_adverse_drug_event_classification` - **Task:** Classify text for presence of adverse drug events - **Size:** ~10K samples - **Labels:** Binary (adverse event / no adverse event) - **Use Case:** Pharmacovigilance, FDA reporting automation - **Model:** Bio_ClinicalBERT ```python from datasets import load_dataset ds = load_dataset("Lots-of-LoRAs/task1495_adverse_drug_event_classification") ``` ### 2. PubMed Multi-Label Classification (MeSH) **Dataset:** `owaiskha9654/PubMed_MultiLabel_Text_Classification_Dataset_MeSH` - **Task:** Assign MeSH medical subject headings to research articles - **Size:** ~50K articles - **Labels:** Multi-label (medical topics) - **Use Case:** Literature categorization, research discovery - **Model:** PubMedBERT ```python from datasets import load_dataset ds = load_dataset("owaiskha9654/PubMed_MultiLabel_Text_Classification_Dataset_MeSH") ``` ### 3. Symptom-to-Disease Prediction **Dataset:** `shanover/disease_symptoms_prec_full` - **Task:** Predict disease from symptom descriptions - **Size:** Variable - **Labels:** Disease categories - **Use Case:** Triage, symptom checker apps - **Model:** Bio_ClinicalBERT ```python from datasets import load_dataset ds = load_dataset("shanover/disease_symptoms_prec_full") ``` ### 4. Medical Triage Classification **Dataset:** `shubham212/Medical_Triage_Classification` - **Task:** Classify urgency level of medical cases - **Size:** ~500 downloads (popular) - **Labels:** Triage levels (Emergency, Urgent, Standard) - **Use Case:** ER automation, telemedicine routing - **Model:** Bio_ClinicalBERT --- ## 📚 Priority 2: QA & Reasoning ### 5. MedMCQA - Medical Exam Questions **Dataset:** `openlifescienceai/medmcqa` (24K downloads!) - **Task:** Answer medical entrance exam questions - **Size:** 194K MCQs covering 2.4K healthcare topics - **Labels:** Multiple choice (A/B/C/D) - **Use Case:** Medical education, knowledge testing - **Model:** Llama-3 or Gemma (LLM fine-tuning) ```python from datasets import load_dataset ds = load_dataset("openlifescienceai/medmcqa") ``` ### 6. PubMedQA - Research Question Answering **Dataset:** `qiaojin/PubMedQA` (18K downloads!) - **Task:** Answer yes/no/maybe questions from abstracts - **Size:** 274K samples - **Labels:** yes / no / maybe - **Use Case:** Evidence-based medicine, literature review - **Model:** PubMedBERT or Bio_ClinicalBERT ```python from datasets import load_dataset ds = load_dataset("qiaojin/PubMedQA") ``` --- ## 🧬 Priority 3: Specialized NLP ### 7. Medical Abbreviation Disambiguation (MeDAL) **Dataset:** `McGill-NLP/medal` - **Task:** Disambiguate medical abbreviations in context - **Size:** 14GB → curated to 4GB - **Labels:** Abbreviation meanings - **Use Case:** Clinical note processing, EHR parsing - **Model:** Bio_ClinicalBERT ### 8. BioInstruct - Instruction Following **Dataset:** `bio-nlp-umass/bioinstruct` - **Task:** Instruction-tuned biomedical tasks - **Size:** 25K instructions - **Labels:** Various biomedical tasks - **Use Case:** General biomedical assistant - **Model:** Llama-3 or Mistral (LoRA fine-tuning) --- ## 🛠️ Implementation Roadmap ### Week 1: Adverse Drug Events 1. Download ADE dataset 2. Add to handler.py as new training mode 3. Train classifier → S3 4. Build inference endpoint ### Week 2: PubMed Classification 1. Download PubMed MeSH dataset 2. Multi-label classification head 3. Train → S3 4. Literature search API ### Week 3: Medical QA 1. Download MedMCQA 2. LLM fine-tuning with LoRA 3. Deploy QA endpoint ### Week 4: Symptom Checker 1. Symptom-disease dataset 2. Train classifier 3. Build symptom input → disease prediction API --- ## 📊 Dataset Comparison | Dataset | Size | Task | Difficulty | Business Value | |---------|------|------|------------|----------------| | DDI (current) | 176K | Classification | Medium | ⭐⭐⭐⭐⭐ | | Adverse Events | 10K | Binary | Easy | ⭐⭐⭐⭐⭐ | | PubMed MeSH | 50K | Multi-label | Medium | ⭐⭐⭐⭐ | | MedMCQA | 194K | MCQ | Hard | ⭐⭐⭐⭐ | | PubMedQA | 274K | Yes/No/Maybe | Medium | ⭐⭐⭐⭐ | | Symptom→Disease | Varies | Classification | Easy | ⭐⭐⭐⭐⭐ | | Triage | ~5K | Classification | Easy | ⭐⭐⭐⭐⭐ | --- ## 🔗 Additional Resources - **MIMIC-III/IV:** ICU clinical data (requires PhysioNet access) - **n2c2 Challenges:** Clinical NLP shared tasks - **i2b2:** De-identified clinical records - **ChemProt:** Chemical-protein interactions - **BC5CDR:** Chemical-disease relations --- *Generated: 2026-02-03*