Fix MinIO endpoint to use internal cluster service

This commit is contained in:
2026-02-03 00:15:26 +00:00
parent 9ca3d6c195
commit 07bb8aa6bb
2 changed files with 373 additions and 2 deletions

371
ddi_training_runpod.yaml Normal file
View File

@@ -0,0 +1,371 @@
# PIPELINE DEFINITION
# Name: ddi-training-runpod
# Description: Train DDI detection model using RunPod serverless GPU
# Inputs:
# epochs: int [Default: 3.0]
# learning_rate: float [Default: 2e-05]
# minio_endpoint: str [Default: 'http://minio.minio.svc.cluster.local:9000']
# model_name: str [Default: 'emilyalsentzer/Bio_ClinicalBERT']
# model_version: str [Default: 'v1']
# runpod_endpoint_id: str [Default: 'YOUR_ENDPOINT_ID']
components:
comp-create-sample-dataset:
executorLabel: exec-create-sample-dataset
inputDefinitions:
parameters:
minio_access_key:
parameterType: STRING
minio_endpoint:
parameterType: STRING
minio_secret_key:
parameterType: STRING
output_path:
defaultValue: ddi_train.json
isOptional: true
parameterType: STRING
outputDefinitions:
parameters:
Output:
parameterType: STRING
comp-register-model:
executorLabel: exec-register-model
inputDefinitions:
parameters:
minio_access_key:
parameterType: STRING
minio_endpoint:
parameterType: STRING
minio_secret_key:
parameterType: STRING
model_name:
defaultValue: ddi-detector
isOptional: true
parameterType: STRING
model_path:
parameterType: STRING
version:
defaultValue: v1
isOptional: true
parameterType: STRING
outputDefinitions:
parameters:
Output:
parameterType: STRING
comp-trigger-runpod-training:
executorLabel: exec-trigger-runpod-training
inputDefinitions:
parameters:
dataset_path:
parameterType: STRING
epochs:
defaultValue: 3.0
isOptional: true
parameterType: NUMBER_INTEGER
learning_rate:
defaultValue: 2.0e-05
isOptional: true
parameterType: NUMBER_DOUBLE
minio_access_key:
parameterType: STRING
minio_endpoint:
parameterType: STRING
minio_secret_key:
parameterType: STRING
model_name:
defaultValue: emilyalsentzer/Bio_ClinicalBERT
isOptional: true
parameterType: STRING
output_model_path:
defaultValue: ddi_model_v1
isOptional: true
parameterType: STRING
runpod_api_key:
parameterType: STRING
runpod_endpoint_id:
parameterType: STRING
outputDefinitions:
parameters:
Output:
parameterType: STRING
deploymentSpec:
executors:
exec-create-sample-dataset:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- create_sample_dataset
command:
- sh
- -c
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
\ python3 -m pip install --quiet --no-warn-script-location 'boto3' 'requests'\
\ && python3 -m pip install --quiet --no-warn-script-location 'kfp==2.15.2'\
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' && \"\
$0\" \"$@\"\n"
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef create_sample_dataset(\n minio_endpoint: str,\n minio_access_key:\
\ str,\n minio_secret_key: str,\n output_path: str = \"ddi_train.json\"\
\n) -> str:\n \"\"\"Create a sample DDI training dataset for testing.\"\
\"\"\n import json\n import boto3\n\n # Sample DDI training data\
\ (drug pairs with interaction labels)\n # Labels: 0=none, 1=minor, 2=moderate,\
\ 3=major, 4=contraindicated\n sample_data = [\n {\"text\": \"\
Patient taking warfarin and aspirin together\", \"label\": 3},\n \
\ {\"text\": \"Metformin administered with lisinopril\", \"label\": 0},\n\
\ {\"text\": \"Concurrent use of simvastatin and amiodarone\", \"\
label\": 3},\n {\"text\": \"Patient prescribed omeprazole with clopidogrel\"\
, \"label\": 2},\n {\"text\": \"Fluoxetine and tramadol co-administration\"\
, \"label\": 4},\n {\"text\": \"Atorvastatin given with diltiazem\"\
, \"label\": 2},\n {\"text\": \"Methotrexate and NSAIDs used together\"\
, \"label\": 3},\n {\"text\": \"Levothyroxine taken with calcium\
\ supplements\", \"label\": 1},\n {\"text\": \"Ciprofloxacin and\
\ theophylline interaction\", \"label\": 3},\n {\"text\": \"ACE inhibitor\
\ with potassium supplement\", \"label\": 2},\n # Add more samples\
\ for better training\n {\"text\": \"Digoxin and amiodarone combination\
\ therapy\", \"label\": 3},\n {\"text\": \"SSRIs with MAO inhibitors\"\
, \"label\": 4},\n {\"text\": \"Lithium and ACE inhibitors together\"\
, \"label\": 3},\n {\"text\": \"Benzodiazepines with opioids\", \"\
label\": 4},\n {\"text\": \"Metronidazole and alcohol consumption\"\
, \"label\": 4},\n ]\n\n # Upload to MinIO\n s3 = boto3.client(\n\
\ 's3',\n endpoint_url=minio_endpoint,\n aws_access_key_id=minio_access_key,\n\
\ aws_secret_access_key=minio_secret_key,\n region_name='us-east-1'\n\
\ )\n\n data_json = json.dumps(sample_data)\n s3.put_object(\n\
\ Bucket='datasets',\n Key=output_path,\n Body=data_json.encode('utf-8'),\n\
\ ContentType='application/json'\n )\n\n print(f\"Uploaded\
\ sample dataset to datasets/{output_path}\")\n return output_path\n\n"
image: python:3.11-slim
exec-register-model:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- register_model
command:
- sh
- -c
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
\ python3 -m pip install --quiet --no-warn-script-location 'boto3' && \
\ python3 -m pip install --quiet --no-warn-script-location 'kfp==2.15.2'\
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' && \"\
$0\" \"$@\"\n"
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef register_model(\n model_path: str,\n minio_endpoint: str,\n\
\ minio_access_key: str,\n minio_secret_key: str,\n model_name:\
\ str = \"ddi-detector\",\n version: str = \"v1\"\n) -> str:\n \"\"\
\"Register the trained model in the model registry.\"\"\"\n import boto3\n\
\ import json\n from datetime import datetime\n\n s3 = boto3.client(\n\
\ 's3',\n endpoint_url=minio_endpoint,\n aws_access_key_id=minio_access_key,\n\
\ aws_secret_access_key=minio_secret_key,\n region_name='us-east-1'\n\
\ )\n\n # Create model registry entry\n registry_entry = {\n \
\ \"name\": model_name,\n \"version\": version,\n \"\
path\": model_path,\n \"created_at\": datetime.utcnow().isoformat(),\n\
\ \"framework\": \"transformers\",\n \"task\": \"sequence-classification\"\
,\n \"labels\": [\"none\", \"minor\", \"moderate\", \"major\", \"\
contraindicated\"]\n }\n\n registry_key = f\"registry/{model_name}/{version}/metadata.json\"\
\n s3.put_object(\n Bucket='models',\n Key=registry_key,\n\
\ Body=json.dumps(registry_entry).encode('utf-8'),\n ContentType='application/json'\n\
\ )\n\n print(f\"Model registered: {model_name} v{version}\")\n \
\ print(f\"Registry path: models/{registry_key}\")\n\n return f\"models/{registry_key}\"\
\n\n"
image: python:3.11-slim
exec-trigger-runpod-training:
container:
args:
- --executor_input
- '{{$}}'
- --function_to_execute
- trigger_runpod_training
command:
- sh
- -c
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
\ python3 -m pip install --quiet --no-warn-script-location 'requests' &&\
\ python3 -m pip install --quiet --no-warn-script-location 'kfp==2.15.2'\
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' && \"\
$0\" \"$@\"\n"
- sh
- -ec
- 'program_path=$(mktemp -d)
printf "%s" "$0" > "$program_path/ephemeral_component.py"
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
'
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
\ *\n\ndef trigger_runpod_training(\n runpod_api_key: str,\n runpod_endpoint_id:\
\ str,\n minio_endpoint: str,\n minio_access_key: str,\n minio_secret_key:\
\ str,\n dataset_path: str,\n model_name: str = \"emilyalsentzer/Bio_ClinicalBERT\"\
,\n epochs: int = 3,\n learning_rate: float = 2e-5,\n output_model_path:\
\ str = \"ddi_model_v1\"\n) -> str:\n \"\"\"Trigger RunPod serverless\
\ training job.\"\"\"\n import requests\n import json\n import\
\ time\n\n # RunPod API endpoint\n url = f\"https://api.runpod.ai/v2/{runpod_endpoint_id}/runsync\"\
\n\n headers = {\n \"Authorization\": f\"Bearer {runpod_api_key}\"\
,\n \"Content-Type\": \"application/json\"\n }\n\n payload\
\ = {\n \"input\": {\n \"model_name\": model_name,\n \
\ \"dataset_path\": dataset_path,\n \"epochs\": epochs,\n\
\ \"learning_rate\": learning_rate,\n \"batch_size\"\
: 16,\n \"output_path\": output_model_path,\n # MinIO\
\ credentials for the worker\n \"minio_endpoint\": minio_endpoint,\n\
\ \"minio_access_key\": minio_access_key,\n \"minio_secret_key\"\
: minio_secret_key\n }\n }\n\n print(f\"Triggering RunPod training\
\ job...\")\n print(f\"Model: {model_name}\")\n print(f\"Dataset:\
\ {dataset_path}\")\n print(f\"Epochs: {epochs}\")\n\n response =\
\ requests.post(url, headers=headers, json=payload, timeout=3600)\n result\
\ = response.json()\n\n if response.status_code != 200:\n raise\
\ Exception(f\"RunPod API error: {result}\")\n\n if result.get('status')\
\ == 'FAILED':\n raise Exception(f\"Training failed: {result.get('error')}\"\
)\n\n output = result.get('output', {})\n print(f\"Training complete!\"\
)\n print(f\"Model path: {output.get('model_path')}\")\n print(f\"\
Metrics: {output.get('metrics')}\")\n\n return output.get('model_path',\
\ f\"s3://models/{output_model_path}\")\n\n"
image: python:3.11-slim
pipelineInfo:
description: Train DDI detection model using RunPod serverless GPU
name: ddi-training-runpod
root:
dag:
tasks:
create-sample-dataset:
cachingOptions:
enableCache: true
componentRef:
name: comp-create-sample-dataset
inputs:
parameters:
minio_access_key:
runtimeValue:
constant: minioadmin
minio_endpoint:
componentInputParameter: minio_endpoint
minio_secret_key:
runtimeValue:
constant: minioadmin123!
output_path:
runtimeValue:
constant: ddi_train_{{$.inputs.parameters['pipelinechannel--model_version']}}.json
pipelinechannel--model_version:
componentInputParameter: model_version
taskInfo:
name: create-sample-dataset
register-model:
cachingOptions:
enableCache: true
componentRef:
name: comp-register-model
dependentTasks:
- trigger-runpod-training
inputs:
parameters:
minio_access_key:
runtimeValue:
constant: minioadmin
minio_endpoint:
componentInputParameter: minio_endpoint
minio_secret_key:
runtimeValue:
constant: minioadmin123!
model_name:
runtimeValue:
constant: ddi-detector
model_path:
taskOutputParameter:
outputParameterKey: Output
producerTask: trigger-runpod-training
version:
componentInputParameter: model_version
taskInfo:
name: register-model
trigger-runpod-training:
cachingOptions:
enableCache: true
componentRef:
name: comp-trigger-runpod-training
dependentTasks:
- create-sample-dataset
inputs:
parameters:
dataset_path:
taskOutputParameter:
outputParameterKey: Output
producerTask: create-sample-dataset
epochs:
componentInputParameter: epochs
learning_rate:
componentInputParameter: learning_rate
minio_access_key:
runtimeValue:
constant: minioadmin
minio_endpoint:
componentInputParameter: minio_endpoint
minio_secret_key:
runtimeValue:
constant: minioadmin123!
model_name:
componentInputParameter: model_name
output_model_path:
runtimeValue:
constant: ddi_model_{{$.inputs.parameters['pipelinechannel--model_version']}}
pipelinechannel--model_version:
componentInputParameter: model_version
runpod_api_key:
runtimeValue:
constant: ''
runpod_endpoint_id:
componentInputParameter: runpod_endpoint_id
taskInfo:
name: trigger-runpod-training
inputDefinitions:
parameters:
epochs:
defaultValue: 3.0
isOptional: true
parameterType: NUMBER_INTEGER
learning_rate:
defaultValue: 2.0e-05
isOptional: true
parameterType: NUMBER_DOUBLE
minio_endpoint:
defaultValue: http://minio.minio.svc.cluster.local:9000
isOptional: true
parameterType: STRING
model_name:
defaultValue: emilyalsentzer/Bio_ClinicalBERT
isOptional: true
parameterType: STRING
model_version:
defaultValue: v1
isOptional: true
parameterType: STRING
runpod_endpoint_id:
defaultValue: YOUR_ENDPOINT_ID
isOptional: true
parameterType: STRING
schemaVersion: 2.1.0
sdkVersion: kfp-2.15.2

View File

@@ -198,8 +198,8 @@ def ddi_training_pipeline(
learning_rate: float = 2e-5, learning_rate: float = 2e-5,
model_version: str = "v1", model_version: str = "v1",
# MinIO settings (these will be injected from secrets) # MinIO settings - use internal cluster service URL
minio_endpoint: str = "https://minio.walleye-frog.ts.net", minio_endpoint: str = "http://minio.minio.svc.cluster.local:9000",
): ):
""" """
Full DDI training pipeline: Full DDI training pipeline: