Add DDI training pipeline with RunPod serverless GPU support

This commit is contained in:
2026-02-02 23:56:05 +00:00
parent 11da494a4f
commit 9ca3d6c195
3 changed files with 459 additions and 0 deletions

View File

@@ -0,0 +1,21 @@
FROM runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04
WORKDIR /app
# Install dependencies
RUN pip install --no-cache-dir \
runpod \
transformers \
datasets \
accelerate \
boto3 \
scikit-learn \
scipy
# Copy handler
COPY handler.py /app/handler.py
# Set environment variables
ENV PYTHONUNBUFFERED=1
CMD ["python", "-u", "handler.py"]

View File

@@ -0,0 +1,183 @@
"""
RunPod Serverless Handler for DDI Model Training
This runs on RunPod GPU instances and trains the Bio_ClinicalBERT model
for drug-drug interaction detection.
"""
import os
import json
import runpod
from typing import Dict, Any
def download_from_minio(bucket: str, key: str, local_path: str):
"""Download file from MinIO."""
import boto3
s3 = boto3.client(
's3',
endpoint_url=os.environ['MINIO_ENDPOINT'],
aws_access_key_id=os.environ['MINIO_ACCESS_KEY'],
aws_secret_access_key=os.environ['MINIO_SECRET_KEY']
)
s3.download_file(bucket, key, local_path)
def upload_to_minio(local_path: str, bucket: str, key: str):
"""Upload file to MinIO."""
import boto3
s3 = boto3.client(
's3',
endpoint_url=os.environ['MINIO_ENDPOINT'],
aws_access_key_id=os.environ['MINIO_ACCESS_KEY'],
aws_secret_access_key=os.environ['MINIO_SECRET_KEY']
)
s3.upload_file(local_path, bucket, key)
def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
"""
Train DDI detection model.
Expected input:
{
"model_name": "emilyalsentzer/Bio_ClinicalBERT",
"dataset_path": "datasets/ddi_train.json",
"epochs": 3,
"learning_rate": 2e-5,
"batch_size": 16,
"output_path": "models/ddi_model_v1"
}
"""
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
TrainingArguments,
Trainer
)
from datasets import Dataset
import tempfile
import shutil
# Extract parameters
model_name = job_input.get('model_name', 'emilyalsentzer/Bio_ClinicalBERT')
dataset_path = job_input.get('dataset_path', 'datasets/ddi_train.json')
epochs = job_input.get('epochs', 3)
learning_rate = job_input.get('learning_rate', 2e-5)
batch_size = job_input.get('batch_size', 16)
output_path = job_input.get('output_path', 'models/ddi_model')
# Create temp directory
work_dir = tempfile.mkdtemp()
data_file = os.path.join(work_dir, 'train.json')
model_dir = os.path.join(work_dir, 'model')
try:
# Download training data from MinIO
print(f"Downloading dataset from {dataset_path}...")
download_from_minio('datasets', dataset_path, data_file)
# Load dataset
with open(data_file, 'r') as f:
train_data = json.load(f)
dataset = Dataset.from_list(train_data)
# Load model and tokenizer
print(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=5 # DDI severity levels: none, minor, moderate, major, contraindicated
)
# Tokenize dataset
def tokenize_function(examples):
return tokenizer(
examples['text'],
padding='max_length',
truncation=True,
max_length=512
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Training arguments
training_args = TrainingArguments(
output_dir=model_dir,
num_train_epochs=epochs,
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_steps=100,
weight_decay=0.01,
logging_dir=os.path.join(work_dir, 'logs'),
logging_steps=10,
save_strategy='epoch',
evaluation_strategy='epoch' if 'validation' in train_data else 'no',
load_best_model_at_end=True if 'validation' in train_data else False,
fp16=torch.cuda.is_available(),
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
# Train
print("Starting training...")
train_result = trainer.train()
# Save model
print("Saving model...")
trainer.save_model(model_dir)
tokenizer.save_pretrained(model_dir)
# Save training metrics
metrics = {
'train_loss': train_result.training_loss,
'epochs': epochs,
'model_name': model_name,
'samples': len(dataset)
}
with open(os.path.join(model_dir, 'metrics.json'), 'w') as f:
json.dump(metrics, f)
# Upload model to MinIO
print(f"Uploading model to {output_path}...")
for root, dirs, files in os.walk(model_dir):
for file in files:
local_file = os.path.join(root, file)
relative_path = os.path.relpath(local_file, model_dir)
minio_key = f"{output_path}/{relative_path}"
upload_to_minio(local_file, 'models', minio_key)
return {
'status': 'success',
'model_path': f"s3://models/{output_path}",
'metrics': metrics
}
except Exception as e:
return {
'status': 'error',
'error': str(e)
}
finally:
# Cleanup
shutil.rmtree(work_dir, ignore_errors=True)
def handler(job):
"""RunPod serverless handler."""
job_input = job['input']
return train_ddi_model(job_input)
# RunPod serverless entrypoint
runpod.serverless.start({'handler': handler})

View File

@@ -0,0 +1,255 @@
"""
DDI Training Pipeline with RunPod GPU
Fully automated pipeline that:
1. Preprocesses CCDA/FHIR clinical data
2. Uploads to MinIO
3. Triggers RunPod serverless GPU training
4. Evaluates and registers the model
"""
import os
from kfp import dsl
from kfp import compiler
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["boto3", "requests"]
)
def create_sample_dataset(
minio_endpoint: str,
minio_access_key: str,
minio_secret_key: str,
output_path: str = "ddi_train.json"
) -> str:
"""Create a sample DDI training dataset for testing."""
import json
import boto3
# Sample DDI training data (drug pairs with interaction labels)
# Labels: 0=none, 1=minor, 2=moderate, 3=major, 4=contraindicated
sample_data = [
{"text": "Patient taking warfarin and aspirin together", "label": 3},
{"text": "Metformin administered with lisinopril", "label": 0},
{"text": "Concurrent use of simvastatin and amiodarone", "label": 3},
{"text": "Patient prescribed omeprazole with clopidogrel", "label": 2},
{"text": "Fluoxetine and tramadol co-administration", "label": 4},
{"text": "Atorvastatin given with diltiazem", "label": 2},
{"text": "Methotrexate and NSAIDs used together", "label": 3},
{"text": "Levothyroxine taken with calcium supplements", "label": 1},
{"text": "Ciprofloxacin and theophylline interaction", "label": 3},
{"text": "ACE inhibitor with potassium supplement", "label": 2},
# Add more samples for better training
{"text": "Digoxin and amiodarone combination therapy", "label": 3},
{"text": "SSRIs with MAO inhibitors", "label": 4},
{"text": "Lithium and ACE inhibitors together", "label": 3},
{"text": "Benzodiazepines with opioids", "label": 4},
{"text": "Metronidazole and alcohol consumption", "label": 4},
]
# Upload to MinIO
s3 = boto3.client(
's3',
endpoint_url=minio_endpoint,
aws_access_key_id=minio_access_key,
aws_secret_access_key=minio_secret_key,
region_name='us-east-1'
)
data_json = json.dumps(sample_data)
s3.put_object(
Bucket='datasets',
Key=output_path,
Body=data_json.encode('utf-8'),
ContentType='application/json'
)
print(f"Uploaded sample dataset to datasets/{output_path}")
return output_path
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["requests"]
)
def trigger_runpod_training(
runpod_api_key: str,
runpod_endpoint_id: str,
minio_endpoint: str,
minio_access_key: str,
minio_secret_key: str,
dataset_path: str,
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
epochs: int = 3,
learning_rate: float = 2e-5,
output_model_path: str = "ddi_model_v1"
) -> str:
"""Trigger RunPod serverless training job."""
import requests
import json
import time
# RunPod API endpoint
url = f"https://api.runpod.ai/v2/{runpod_endpoint_id}/runsync"
headers = {
"Authorization": f"Bearer {runpod_api_key}",
"Content-Type": "application/json"
}
payload = {
"input": {
"model_name": model_name,
"dataset_path": dataset_path,
"epochs": epochs,
"learning_rate": learning_rate,
"batch_size": 16,
"output_path": output_model_path,
# MinIO credentials for the worker
"minio_endpoint": minio_endpoint,
"minio_access_key": minio_access_key,
"minio_secret_key": minio_secret_key
}
}
print(f"Triggering RunPod training job...")
print(f"Model: {model_name}")
print(f"Dataset: {dataset_path}")
print(f"Epochs: {epochs}")
response = requests.post(url, headers=headers, json=payload, timeout=3600)
result = response.json()
if response.status_code != 200:
raise Exception(f"RunPod API error: {result}")
if result.get('status') == 'FAILED':
raise Exception(f"Training failed: {result.get('error')}")
output = result.get('output', {})
print(f"Training complete!")
print(f"Model path: {output.get('model_path')}")
print(f"Metrics: {output.get('metrics')}")
return output.get('model_path', f"s3://models/{output_model_path}")
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["boto3"]
)
def register_model(
model_path: str,
minio_endpoint: str,
minio_access_key: str,
minio_secret_key: str,
model_name: str = "ddi-detector",
version: str = "v1"
) -> str:
"""Register the trained model in the model registry."""
import boto3
import json
from datetime import datetime
s3 = boto3.client(
's3',
endpoint_url=minio_endpoint,
aws_access_key_id=minio_access_key,
aws_secret_access_key=minio_secret_key,
region_name='us-east-1'
)
# Create model registry entry
registry_entry = {
"name": model_name,
"version": version,
"path": model_path,
"created_at": datetime.utcnow().isoformat(),
"framework": "transformers",
"task": "sequence-classification",
"labels": ["none", "minor", "moderate", "major", "contraindicated"]
}
registry_key = f"registry/{model_name}/{version}/metadata.json"
s3.put_object(
Bucket='models',
Key=registry_key,
Body=json.dumps(registry_entry).encode('utf-8'),
ContentType='application/json'
)
print(f"Model registered: {model_name} v{version}")
print(f"Registry path: models/{registry_key}")
return f"models/{registry_key}"
@dsl.pipeline(
name="ddi-training-runpod",
description="Train DDI detection model using RunPod serverless GPU"
)
def ddi_training_pipeline(
# RunPod settings
runpod_endpoint_id: str = "YOUR_ENDPOINT_ID",
# Model settings
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
epochs: int = 3,
learning_rate: float = 2e-5,
model_version: str = "v1",
# MinIO settings (these will be injected from secrets)
minio_endpoint: str = "https://minio.walleye-frog.ts.net",
):
"""
Full DDI training pipeline:
1. Create/upload sample dataset
2. Trigger RunPod GPU training
3. Register trained model
"""
import os
# These would come from k8s secrets in production
minio_access_key = "minioadmin"
minio_secret_key = "minioadmin123!"
runpod_api_key = os.environ.get("RUNPOD_API_KEY", "")
# Step 1: Create sample dataset
dataset_task = create_sample_dataset(
minio_endpoint=minio_endpoint,
minio_access_key=minio_access_key,
minio_secret_key=minio_secret_key,
output_path=f"ddi_train_{model_version}.json"
)
# Step 2: Trigger RunPod training
training_task = trigger_runpod_training(
runpod_api_key=runpod_api_key,
runpod_endpoint_id=runpod_endpoint_id,
minio_endpoint=minio_endpoint,
minio_access_key=minio_access_key,
minio_secret_key=minio_secret_key,
dataset_path=dataset_task.output,
model_name=model_name,
epochs=epochs,
learning_rate=learning_rate,
output_model_path=f"ddi_model_{model_version}"
)
# Step 3: Register model
register_task = register_model(
model_path=training_task.output,
minio_endpoint=minio_endpoint,
minio_access_key=minio_access_key,
minio_secret_key=minio_secret_key,
model_name="ddi-detector",
version=model_version
)
if __name__ == "__main__":
compiler.Compiler().compile(
pipeline_func=ddi_training_pipeline,
package_path="ddi_training_runpod.yaml"
)
print("Pipeline compiled to ddi_training_runpod.yaml")