mirror of
https://github.com/ghndrx/kubeflow-pipelines.git
synced 2026-02-10 06:45:13 +00:00
Use Tailscale endpoints, add RunPod Docker build files
This commit is contained in:
@@ -2,20 +2,17 @@ FROM runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# Copy requirements first for better caching
|
||||
COPY requirements.txt /app/requirements.txt
|
||||
|
||||
# Install dependencies
|
||||
RUN pip install --no-cache-dir \
|
||||
runpod \
|
||||
transformers \
|
||||
datasets \
|
||||
accelerate \
|
||||
boto3 \
|
||||
scikit-learn \
|
||||
scipy
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy handler
|
||||
COPY handler.py /app/handler.py
|
||||
|
||||
# Set environment variables
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV HF_HOME=/tmp/huggingface
|
||||
|
||||
CMD ["python", "-u", "handler.py"]
|
||||
|
||||
9
components/runpod_trainer/requirements.txt
Normal file
9
components/runpod_trainer/requirements.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
runpod>=1.6.0
|
||||
transformers>=4.36.0
|
||||
datasets>=2.16.0
|
||||
accelerate>=0.25.0
|
||||
boto3>=1.34.0
|
||||
scikit-learn>=1.3.0
|
||||
scipy>=1.11.0
|
||||
torch>=2.1.0
|
||||
safetensors>=0.4.0
|
||||
265
ddi_data_prep.yaml
Normal file
265
ddi_data_prep.yaml
Normal file
@@ -0,0 +1,265 @@
|
||||
# PIPELINE DEFINITION
|
||||
# Name: ddi-data-preparation
|
||||
# Description: Prepare DDI training data and configuration
|
||||
# Inputs:
|
||||
# epochs: int [Default: 3.0]
|
||||
# learning_rate: float [Default: 2e-05]
|
||||
# minio_endpoint: str [Default: 'http://minio.minio.svc.cluster.local:9000']
|
||||
# model_name: str [Default: 'emilyalsentzer/Bio_ClinicalBERT']
|
||||
components:
|
||||
comp-create-ddi-dataset:
|
||||
executorLabel: exec-create-ddi-dataset
|
||||
inputDefinitions:
|
||||
parameters:
|
||||
minio_access_key:
|
||||
parameterType: STRING
|
||||
minio_endpoint:
|
||||
parameterType: STRING
|
||||
minio_secret_key:
|
||||
parameterType: STRING
|
||||
output_path:
|
||||
defaultValue: ddi_train.json
|
||||
isOptional: true
|
||||
parameterType: STRING
|
||||
outputDefinitions:
|
||||
parameters:
|
||||
Output:
|
||||
parameterType: STRING
|
||||
comp-create-training-config:
|
||||
executorLabel: exec-create-training-config
|
||||
inputDefinitions:
|
||||
parameters:
|
||||
batch_size:
|
||||
defaultValue: 16.0
|
||||
isOptional: true
|
||||
parameterType: NUMBER_INTEGER
|
||||
dataset_path:
|
||||
parameterType: STRING
|
||||
epochs:
|
||||
defaultValue: 3.0
|
||||
isOptional: true
|
||||
parameterType: NUMBER_INTEGER
|
||||
learning_rate:
|
||||
defaultValue: 2.0e-05
|
||||
isOptional: true
|
||||
parameterType: NUMBER_DOUBLE
|
||||
minio_access_key:
|
||||
parameterType: STRING
|
||||
minio_endpoint:
|
||||
parameterType: STRING
|
||||
minio_secret_key:
|
||||
parameterType: STRING
|
||||
model_name:
|
||||
defaultValue: emilyalsentzer/Bio_ClinicalBERT
|
||||
isOptional: true
|
||||
parameterType: STRING
|
||||
outputDefinitions:
|
||||
parameters:
|
||||
Output:
|
||||
parameterType: STRING
|
||||
deploymentSpec:
|
||||
executors:
|
||||
exec-create-ddi-dataset:
|
||||
container:
|
||||
args:
|
||||
- --executor_input
|
||||
- '{{$}}'
|
||||
- --function_to_execute
|
||||
- create_ddi_dataset
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
|
||||
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
|
||||
\ python3 -m pip install --quiet --no-warn-script-location 'boto3' 'requests'\
|
||||
\ && python3 -m pip install --quiet --no-warn-script-location 'kfp==2.15.2'\
|
||||
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' && \"\
|
||||
$0\" \"$@\"\n"
|
||||
- sh
|
||||
- -ec
|
||||
- 'program_path=$(mktemp -d)
|
||||
|
||||
|
||||
printf "%s" "$0" > "$program_path/ephemeral_component.py"
|
||||
|
||||
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
|
||||
|
||||
'
|
||||
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
||||
\ *\n\ndef create_ddi_dataset(\n minio_endpoint: str,\n minio_access_key:\
|
||||
\ str,\n minio_secret_key: str,\n output_path: str = \"ddi_train.json\"\
|
||||
\n) -> str:\n \"\"\"Create DDI training dataset and upload to MinIO.\"\
|
||||
\"\"\n import json\n import boto3\n\n # DDI training data (drug\
|
||||
\ pairs with interaction severity)\n # Labels: 0=none, 1=minor, 2=moderate,\
|
||||
\ 3=major, 4=contraindicated\n training_data = [\n # Major interactions\n\
|
||||
\ {\"text\": \"Patient taking warfarin and aspirin together\", \"\
|
||||
label\": 3},\n {\"text\": \"Concurrent use of simvastatin and amiodarone\"\
|
||||
, \"label\": 3},\n {\"text\": \"Methotrexate and NSAIDs used together\"\
|
||||
, \"label\": 3},\n {\"text\": \"Ciprofloxacin and theophylline interaction\"\
|
||||
, \"label\": 3},\n {\"text\": \"Digoxin and amiodarone combination\
|
||||
\ therapy\", \"label\": 3},\n {\"text\": \"Lithium and ACE inhibitors\
|
||||
\ together\", \"label\": 3},\n\n # Contraindicated\n {\"text\"\
|
||||
: \"Fluoxetine and tramadol co-administration\", \"label\": 4},\n \
|
||||
\ {\"text\": \"SSRIs with MAO inhibitors\", \"label\": 4},\n {\"\
|
||||
text\": \"Benzodiazepines with opioids\", \"label\": 4},\n {\"text\"\
|
||||
: \"Metronidazole and alcohol consumption\", \"label\": 4},\n {\"\
|
||||
text\": \"Linezolid with serotonergic drugs\", \"label\": 4},\n\n \
|
||||
\ # Moderate\n {\"text\": \"Patient prescribed omeprazole with clopidogrel\"\
|
||||
, \"label\": 2},\n {\"text\": \"Atorvastatin given with diltiazem\"\
|
||||
, \"label\": 2},\n {\"text\": \"ACE inhibitor with potassium supplement\"\
|
||||
, \"label\": 2},\n {\"text\": \"Metformin with contrast dye procedures\"\
|
||||
, \"label\": 2},\n\n # Minor\n {\"text\": \"Levothyroxine\
|
||||
\ taken with calcium supplements\", \"label\": 1},\n {\"text\": \"\
|
||||
Antacids with oral antibiotics timing\", \"label\": 1},\n {\"text\"\
|
||||
: \"Iron supplements with dairy products\", \"label\": 1},\n\n #\
|
||||
\ No interaction\n {\"text\": \"Metformin administered with lisinopril\"\
|
||||
, \"label\": 0},\n {\"text\": \"Amlodipine with metoprolol combination\"\
|
||||
, \"label\": 0},\n {\"text\": \"Omeprazole and acetaminophen together\"\
|
||||
, \"label\": 0},\n {\"text\": \"Vitamin D with calcium supplements\"\
|
||||
, \"label\": 0},\n ]\n\n # Upload to MinIO\n s3 = boto3.client(\n\
|
||||
\ 's3',\n endpoint_url=minio_endpoint,\n aws_access_key_id=minio_access_key,\n\
|
||||
\ aws_secret_access_key=minio_secret_key,\n region_name='us-east-1'\n\
|
||||
\ )\n\n data_json = json.dumps(training_data, indent=2)\n s3.put_object(\n\
|
||||
\ Bucket='datasets',\n Key=output_path,\n Body=data_json.encode('utf-8'),\n\
|
||||
\ ContentType='application/json'\n )\n\n print(f\"\u2705 Uploaded\
|
||||
\ {len(training_data)} samples to datasets/{output_path}\")\n print(f\"\
|
||||
\ - Contraindicated: {sum(1 for d in training_data if d['label'] == 4)}\"\
|
||||
)\n print(f\" - Major: {sum(1 for d in training_data if d['label']\
|
||||
\ == 3)}\")\n print(f\" - Moderate: {sum(1 for d in training_data if\
|
||||
\ d['label'] == 2)}\")\n print(f\" - Minor: {sum(1 for d in training_data\
|
||||
\ if d['label'] == 1)}\")\n print(f\" - None: {sum(1 for d in training_data\
|
||||
\ if d['label'] == 0)}\")\n\n return f\"s3://datasets/{output_path}\"\
|
||||
\n\n"
|
||||
image: python:3.11-slim
|
||||
exec-create-training-config:
|
||||
container:
|
||||
args:
|
||||
- --executor_input
|
||||
- '{{$}}'
|
||||
- --function_to_execute
|
||||
- create_training_config
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip ||\
|
||||
\ python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1\
|
||||
\ python3 -m pip install --quiet --no-warn-script-location 'boto3' && \
|
||||
\ python3 -m pip install --quiet --no-warn-script-location 'kfp==2.15.2'\
|
||||
\ '--no-deps' 'typing-extensions>=3.7.4,<5; python_version<\"3.9\"' && \"\
|
||||
$0\" \"$@\"\n"
|
||||
- sh
|
||||
- -ec
|
||||
- 'program_path=$(mktemp -d)
|
||||
|
||||
|
||||
printf "%s" "$0" > "$program_path/ephemeral_component.py"
|
||||
|
||||
_KFP_RUNTIME=true python3 -m kfp.dsl.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"
|
||||
|
||||
'
|
||||
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
||||
\ *\n\ndef create_training_config(\n minio_endpoint: str,\n minio_access_key:\
|
||||
\ str,\n minio_secret_key: str,\n dataset_path: str,\n model_name:\
|
||||
\ str = \"emilyalsentzer/Bio_ClinicalBERT\",\n epochs: int = 3,\n \
|
||||
\ learning_rate: float = 2e-5,\n batch_size: int = 16\n) -> str:\n \
|
||||
\ \"\"\"Create training configuration file.\"\"\"\n import json\n \
|
||||
\ import boto3\n from datetime import datetime\n\n config = {\n \
|
||||
\ \"created_at\": datetime.utcnow().isoformat(),\n \"dataset\"\
|
||||
: {\n \"path\": dataset_path,\n \"format\": \"json\"\
|
||||
,\n \"text_field\": \"text\",\n \"label_field\": \"\
|
||||
label\"\n },\n \"model\": {\n \"base_model\": model_name,\n\
|
||||
\ \"num_labels\": 5,\n \"label_names\": [\"none\"\
|
||||
, \"minor\", \"moderate\", \"major\", \"contraindicated\"]\n },\n\
|
||||
\ \"training\": {\n \"epochs\": epochs,\n \"\
|
||||
learning_rate\": learning_rate,\n \"batch_size\": batch_size,\n\
|
||||
\ \"warmup_steps\": 100,\n \"weight_decay\": 0.01,\n\
|
||||
\ \"fp16\": True,\n \"evaluation_strategy\": \"epoch\"\
|
||||
,\n \"save_strategy\": \"epoch\"\n },\n \"output\"\
|
||||
: {\n \"model_path\": \"models/ddi-detector\",\n \"\
|
||||
metrics_path\": \"models/ddi-detector/metrics.json\"\n }\n }\n\
|
||||
\n s3 = boto3.client(\n 's3',\n endpoint_url=minio_endpoint,\n\
|
||||
\ aws_access_key_id=minio_access_key,\n aws_secret_access_key=minio_secret_key,\n\
|
||||
\ region_name='us-east-1'\n )\n\n config_json = json.dumps(config,\
|
||||
\ indent=2)\n config_path = \"configs/ddi_training_config.json\"\n\n\
|
||||
\ s3.put_object(\n Bucket='training-data',\n Key=config_path,\n\
|
||||
\ Body=config_json.encode('utf-8'),\n ContentType='application/json'\n\
|
||||
\ )\n\n print(f\"\u2705 Training config saved to training-data/{config_path}\"\
|
||||
)\n print(f\" Model: {model_name}\")\n print(f\" Epochs: {epochs}\"\
|
||||
)\n print(f\" Learning rate: {learning_rate}\")\n\n return f\"s3://training-data/{config_path}\"\
|
||||
\n\n"
|
||||
image: python:3.11-slim
|
||||
pipelineInfo:
|
||||
description: Prepare DDI training data and configuration
|
||||
name: ddi-data-preparation
|
||||
root:
|
||||
dag:
|
||||
tasks:
|
||||
create-ddi-dataset:
|
||||
cachingOptions:
|
||||
enableCache: true
|
||||
componentRef:
|
||||
name: comp-create-ddi-dataset
|
||||
inputs:
|
||||
parameters:
|
||||
minio_access_key:
|
||||
runtimeValue:
|
||||
constant: minioadmin
|
||||
minio_endpoint:
|
||||
componentInputParameter: minio_endpoint
|
||||
minio_secret_key:
|
||||
runtimeValue:
|
||||
constant: minioadmin123!
|
||||
output_path:
|
||||
runtimeValue:
|
||||
constant: ddi_train.json
|
||||
taskInfo:
|
||||
name: create-ddi-dataset
|
||||
create-training-config:
|
||||
cachingOptions:
|
||||
enableCache: true
|
||||
componentRef:
|
||||
name: comp-create-training-config
|
||||
dependentTasks:
|
||||
- create-ddi-dataset
|
||||
inputs:
|
||||
parameters:
|
||||
dataset_path:
|
||||
taskOutputParameter:
|
||||
outputParameterKey: Output
|
||||
producerTask: create-ddi-dataset
|
||||
epochs:
|
||||
componentInputParameter: epochs
|
||||
learning_rate:
|
||||
componentInputParameter: learning_rate
|
||||
minio_access_key:
|
||||
runtimeValue:
|
||||
constant: minioadmin
|
||||
minio_endpoint:
|
||||
componentInputParameter: minio_endpoint
|
||||
minio_secret_key:
|
||||
runtimeValue:
|
||||
constant: minioadmin123!
|
||||
model_name:
|
||||
componentInputParameter: model_name
|
||||
taskInfo:
|
||||
name: create-training-config
|
||||
inputDefinitions:
|
||||
parameters:
|
||||
epochs:
|
||||
defaultValue: 3.0
|
||||
isOptional: true
|
||||
parameterType: NUMBER_INTEGER
|
||||
learning_rate:
|
||||
defaultValue: 2.0e-05
|
||||
isOptional: true
|
||||
parameterType: NUMBER_DOUBLE
|
||||
minio_endpoint:
|
||||
defaultValue: http://minio.minio.svc.cluster.local:9000
|
||||
isOptional: true
|
||||
parameterType: STRING
|
||||
model_name:
|
||||
defaultValue: emilyalsentzer/Bio_ClinicalBERT
|
||||
isOptional: true
|
||||
parameterType: STRING
|
||||
schemaVersion: 2.1.0
|
||||
sdkVersion: kfp-2.15.2
|
||||
210
pipelines/ddi_data_prep.py
Normal file
210
pipelines/ddi_data_prep.py
Normal file
@@ -0,0 +1,210 @@
|
||||
"""
|
||||
DDI Data Preparation Pipeline
|
||||
|
||||
Prepares training data for DDI detection model.
|
||||
Training can be triggered manually on RunPod or any GPU environment.
|
||||
"""
|
||||
from kfp import dsl
|
||||
from kfp import compiler
|
||||
|
||||
|
||||
@dsl.component(
|
||||
base_image="python:3.11-slim",
|
||||
packages_to_install=["boto3", "requests"]
|
||||
)
|
||||
def create_ddi_dataset(
|
||||
minio_endpoint: str,
|
||||
minio_access_key: str,
|
||||
minio_secret_key: str,
|
||||
output_path: str = "ddi_train.json"
|
||||
) -> str:
|
||||
"""Create DDI training dataset and upload to MinIO."""
|
||||
import json
|
||||
import boto3
|
||||
|
||||
# DDI training data (drug pairs with interaction severity)
|
||||
# Labels: 0=none, 1=minor, 2=moderate, 3=major, 4=contraindicated
|
||||
training_data = [
|
||||
# Major interactions
|
||||
{"text": "Patient taking warfarin and aspirin together", "label": 3},
|
||||
{"text": "Concurrent use of simvastatin and amiodarone", "label": 3},
|
||||
{"text": "Methotrexate and NSAIDs used together", "label": 3},
|
||||
{"text": "Ciprofloxacin and theophylline interaction", "label": 3},
|
||||
{"text": "Digoxin and amiodarone combination therapy", "label": 3},
|
||||
{"text": "Lithium and ACE inhibitors together", "label": 3},
|
||||
|
||||
# Contraindicated
|
||||
{"text": "Fluoxetine and tramadol co-administration", "label": 4},
|
||||
{"text": "SSRIs with MAO inhibitors", "label": 4},
|
||||
{"text": "Benzodiazepines with opioids", "label": 4},
|
||||
{"text": "Metronidazole and alcohol consumption", "label": 4},
|
||||
{"text": "Linezolid with serotonergic drugs", "label": 4},
|
||||
|
||||
# Moderate
|
||||
{"text": "Patient prescribed omeprazole with clopidogrel", "label": 2},
|
||||
{"text": "Atorvastatin given with diltiazem", "label": 2},
|
||||
{"text": "ACE inhibitor with potassium supplement", "label": 2},
|
||||
{"text": "Metformin with contrast dye procedures", "label": 2},
|
||||
|
||||
# Minor
|
||||
{"text": "Levothyroxine taken with calcium supplements", "label": 1},
|
||||
{"text": "Antacids with oral antibiotics timing", "label": 1},
|
||||
{"text": "Iron supplements with dairy products", "label": 1},
|
||||
|
||||
# No interaction
|
||||
{"text": "Metformin administered with lisinopril", "label": 0},
|
||||
{"text": "Amlodipine with metoprolol combination", "label": 0},
|
||||
{"text": "Omeprazole and acetaminophen together", "label": 0},
|
||||
{"text": "Vitamin D with calcium supplements", "label": 0},
|
||||
]
|
||||
|
||||
# Upload to MinIO
|
||||
s3 = boto3.client(
|
||||
's3',
|
||||
endpoint_url=minio_endpoint,
|
||||
aws_access_key_id=minio_access_key,
|
||||
aws_secret_access_key=minio_secret_key,
|
||||
region_name='us-east-1'
|
||||
)
|
||||
|
||||
data_json = json.dumps(training_data, indent=2)
|
||||
s3.put_object(
|
||||
Bucket='datasets',
|
||||
Key=output_path,
|
||||
Body=data_json.encode('utf-8'),
|
||||
ContentType='application/json'
|
||||
)
|
||||
|
||||
print(f"✅ Uploaded {len(training_data)} samples to datasets/{output_path}")
|
||||
print(f" - Contraindicated: {sum(1 for d in training_data if d['label'] == 4)}")
|
||||
print(f" - Major: {sum(1 for d in training_data if d['label'] == 3)}")
|
||||
print(f" - Moderate: {sum(1 for d in training_data if d['label'] == 2)}")
|
||||
print(f" - Minor: {sum(1 for d in training_data if d['label'] == 1)}")
|
||||
print(f" - None: {sum(1 for d in training_data if d['label'] == 0)}")
|
||||
|
||||
return f"s3://datasets/{output_path}"
|
||||
|
||||
|
||||
@dsl.component(
|
||||
base_image="python:3.11-slim",
|
||||
packages_to_install=["boto3"]
|
||||
)
|
||||
def create_training_config(
|
||||
minio_endpoint: str,
|
||||
minio_access_key: str,
|
||||
minio_secret_key: str,
|
||||
dataset_path: str,
|
||||
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
|
||||
epochs: int = 3,
|
||||
learning_rate: float = 2e-5,
|
||||
batch_size: int = 16
|
||||
) -> str:
|
||||
"""Create training configuration file."""
|
||||
import json
|
||||
import boto3
|
||||
from datetime import datetime
|
||||
|
||||
config = {
|
||||
"created_at": datetime.utcnow().isoformat(),
|
||||
"dataset": {
|
||||
"path": dataset_path,
|
||||
"format": "json",
|
||||
"text_field": "text",
|
||||
"label_field": "label"
|
||||
},
|
||||
"model": {
|
||||
"base_model": model_name,
|
||||
"num_labels": 5,
|
||||
"label_names": ["none", "minor", "moderate", "major", "contraindicated"]
|
||||
},
|
||||
"training": {
|
||||
"epochs": epochs,
|
||||
"learning_rate": learning_rate,
|
||||
"batch_size": batch_size,
|
||||
"warmup_steps": 100,
|
||||
"weight_decay": 0.01,
|
||||
"fp16": True,
|
||||
"evaluation_strategy": "epoch",
|
||||
"save_strategy": "epoch"
|
||||
},
|
||||
"output": {
|
||||
"model_path": "models/ddi-detector",
|
||||
"metrics_path": "models/ddi-detector/metrics.json"
|
||||
}
|
||||
}
|
||||
|
||||
s3 = boto3.client(
|
||||
's3',
|
||||
endpoint_url=minio_endpoint,
|
||||
aws_access_key_id=minio_access_key,
|
||||
aws_secret_access_key=minio_secret_key,
|
||||
region_name='us-east-1'
|
||||
)
|
||||
|
||||
config_json = json.dumps(config, indent=2)
|
||||
config_path = "configs/ddi_training_config.json"
|
||||
|
||||
s3.put_object(
|
||||
Bucket='training-data',
|
||||
Key=config_path,
|
||||
Body=config_json.encode('utf-8'),
|
||||
ContentType='application/json'
|
||||
)
|
||||
|
||||
print(f"✅ Training config saved to training-data/{config_path}")
|
||||
print(f" Model: {model_name}")
|
||||
print(f" Epochs: {epochs}")
|
||||
print(f" Learning rate: {learning_rate}")
|
||||
|
||||
return f"s3://training-data/{config_path}"
|
||||
|
||||
|
||||
@dsl.pipeline(
|
||||
name="ddi-data-preparation",
|
||||
description="Prepare DDI training data and configuration"
|
||||
)
|
||||
def ddi_data_prep_pipeline(
|
||||
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
|
||||
epochs: int = 3,
|
||||
learning_rate: float = 2e-5,
|
||||
minio_endpoint: str = "http://minio.minio.svc.cluster.local:9000",
|
||||
):
|
||||
"""
|
||||
Data preparation pipeline:
|
||||
1. Create DDI training dataset
|
||||
2. Generate training configuration
|
||||
|
||||
After this completes, run training manually on RunPod:
|
||||
```
|
||||
python train.py --config s3://training-data/configs/ddi_training_config.json
|
||||
```
|
||||
"""
|
||||
minio_access_key = "minioadmin"
|
||||
minio_secret_key = "minioadmin123!"
|
||||
|
||||
# Create dataset
|
||||
dataset_task = create_ddi_dataset(
|
||||
minio_endpoint=minio_endpoint,
|
||||
minio_access_key=minio_access_key,
|
||||
minio_secret_key=minio_secret_key,
|
||||
output_path="ddi_train.json"
|
||||
)
|
||||
|
||||
# Create config
|
||||
config_task = create_training_config(
|
||||
minio_endpoint=minio_endpoint,
|
||||
minio_access_key=minio_access_key,
|
||||
minio_secret_key=minio_secret_key,
|
||||
dataset_path=dataset_task.output,
|
||||
model_name=model_name,
|
||||
epochs=epochs,
|
||||
learning_rate=learning_rate
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
compiler.Compiler().compile(
|
||||
pipeline_func=ddi_data_prep_pipeline,
|
||||
package_path="ddi_data_prep.yaml"
|
||||
)
|
||||
print("Pipeline compiled to ddi_data_prep.yaml")
|
||||
@@ -198,8 +198,8 @@ def ddi_training_pipeline(
|
||||
learning_rate: float = 2e-5,
|
||||
model_version: str = "v1",
|
||||
|
||||
# MinIO settings - use internal cluster service URL
|
||||
minio_endpoint: str = "http://minio.minio.svc.cluster.local:9000",
|
||||
# MinIO settings - use Tailscale endpoint
|
||||
minio_endpoint: str = "https://minio.walleye-frog.ts.net",
|
||||
):
|
||||
"""
|
||||
Full DDI training pipeline:
|
||||
|
||||
Reference in New Issue
Block a user