Files
kubeflow-pipelines/pipelines/ddi_training_runpod.py

256 lines
7.8 KiB
Python

"""
DDI Training Pipeline with RunPod GPU
Fully automated pipeline that:
1. Preprocesses CCDA/FHIR clinical data
2. Uploads to MinIO
3. Triggers RunPod serverless GPU training
4. Evaluates and registers the model
"""
import os
from kfp import dsl
from kfp import compiler
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["boto3", "requests"]
)
def create_sample_dataset(
minio_endpoint: str,
minio_access_key: str,
minio_secret_key: str,
output_path: str = "ddi_train.json"
) -> str:
"""Create a sample DDI training dataset for testing."""
import json
import boto3
# Sample DDI training data (drug pairs with interaction labels)
# Labels: 0=none, 1=minor, 2=moderate, 3=major, 4=contraindicated
sample_data = [
{"text": "Patient taking warfarin and aspirin together", "label": 3},
{"text": "Metformin administered with lisinopril", "label": 0},
{"text": "Concurrent use of simvastatin and amiodarone", "label": 3},
{"text": "Patient prescribed omeprazole with clopidogrel", "label": 2},
{"text": "Fluoxetine and tramadol co-administration", "label": 4},
{"text": "Atorvastatin given with diltiazem", "label": 2},
{"text": "Methotrexate and NSAIDs used together", "label": 3},
{"text": "Levothyroxine taken with calcium supplements", "label": 1},
{"text": "Ciprofloxacin and theophylline interaction", "label": 3},
{"text": "ACE inhibitor with potassium supplement", "label": 2},
# Add more samples for better training
{"text": "Digoxin and amiodarone combination therapy", "label": 3},
{"text": "SSRIs with MAO inhibitors", "label": 4},
{"text": "Lithium and ACE inhibitors together", "label": 3},
{"text": "Benzodiazepines with opioids", "label": 4},
{"text": "Metronidazole and alcohol consumption", "label": 4},
]
# Upload to MinIO
s3 = boto3.client(
's3',
endpoint_url=minio_endpoint,
aws_access_key_id=minio_access_key,
aws_secret_access_key=minio_secret_key,
region_name='us-east-1'
)
data_json = json.dumps(sample_data)
s3.put_object(
Bucket='datasets',
Key=output_path,
Body=data_json.encode('utf-8'),
ContentType='application/json'
)
print(f"Uploaded sample dataset to datasets/{output_path}")
return output_path
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["requests"]
)
def trigger_runpod_training(
runpod_api_key: str,
runpod_endpoint_id: str,
minio_endpoint: str,
minio_access_key: str,
minio_secret_key: str,
dataset_path: str,
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
epochs: int = 3,
learning_rate: float = 2e-5,
output_model_path: str = "ddi_model_v1"
) -> str:
"""Trigger RunPod serverless training job."""
import requests
import json
import time
# RunPod API endpoint
url = f"https://api.runpod.ai/v2/{runpod_endpoint_id}/runsync"
headers = {
"Authorization": f"Bearer {runpod_api_key}",
"Content-Type": "application/json"
}
payload = {
"input": {
"model_name": model_name,
"dataset_path": dataset_path,
"epochs": epochs,
"learning_rate": learning_rate,
"batch_size": 16,
"output_path": output_model_path,
# MinIO credentials for the worker
"minio_endpoint": minio_endpoint,
"minio_access_key": minio_access_key,
"minio_secret_key": minio_secret_key
}
}
print(f"Triggering RunPod training job...")
print(f"Model: {model_name}")
print(f"Dataset: {dataset_path}")
print(f"Epochs: {epochs}")
response = requests.post(url, headers=headers, json=payload, timeout=3600)
result = response.json()
if response.status_code != 200:
raise Exception(f"RunPod API error: {result}")
if result.get('status') == 'FAILED':
raise Exception(f"Training failed: {result.get('error')}")
output = result.get('output', {})
print(f"Training complete!")
print(f"Model path: {output.get('model_path')}")
print(f"Metrics: {output.get('metrics')}")
return output.get('model_path', f"s3://models/{output_model_path}")
@dsl.component(
base_image="python:3.11-slim",
packages_to_install=["boto3"]
)
def register_model(
model_path: str,
minio_endpoint: str,
minio_access_key: str,
minio_secret_key: str,
model_name: str = "ddi-detector",
version: str = "v1"
) -> str:
"""Register the trained model in the model registry."""
import boto3
import json
from datetime import datetime
s3 = boto3.client(
's3',
endpoint_url=minio_endpoint,
aws_access_key_id=minio_access_key,
aws_secret_access_key=minio_secret_key,
region_name='us-east-1'
)
# Create model registry entry
registry_entry = {
"name": model_name,
"version": version,
"path": model_path,
"created_at": datetime.utcnow().isoformat(),
"framework": "transformers",
"task": "sequence-classification",
"labels": ["none", "minor", "moderate", "major", "contraindicated"]
}
registry_key = f"registry/{model_name}/{version}/metadata.json"
s3.put_object(
Bucket='models',
Key=registry_key,
Body=json.dumps(registry_entry).encode('utf-8'),
ContentType='application/json'
)
print(f"Model registered: {model_name} v{version}")
print(f"Registry path: models/{registry_key}")
return f"models/{registry_key}"
@dsl.pipeline(
name="ddi-training-runpod",
description="Train DDI detection model using RunPod serverless GPU"
)
def ddi_training_pipeline(
# RunPod settings
runpod_endpoint_id: str = "YOUR_ENDPOINT_ID",
# Model settings
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
epochs: int = 3,
learning_rate: float = 2e-5,
model_version: str = "v1",
# MinIO settings - use Tailscale endpoint
minio_endpoint: str = "https://minio.walleye-frog.ts.net",
):
"""
Full DDI training pipeline:
1. Create/upload sample dataset
2. Trigger RunPod GPU training
3. Register trained model
"""
import os
# These would come from k8s secrets in production
minio_access_key = "minioadmin"
minio_secret_key = "minioadmin123!"
runpod_api_key = os.environ.get("RUNPOD_API_KEY", "")
# Step 1: Create sample dataset
dataset_task = create_sample_dataset(
minio_endpoint=minio_endpoint,
minio_access_key=minio_access_key,
minio_secret_key=minio_secret_key,
output_path=f"ddi_train_{model_version}.json"
)
# Step 2: Trigger RunPod training
training_task = trigger_runpod_training(
runpod_api_key=runpod_api_key,
runpod_endpoint_id=runpod_endpoint_id,
minio_endpoint=minio_endpoint,
minio_access_key=minio_access_key,
minio_secret_key=minio_secret_key,
dataset_path=dataset_task.output,
model_name=model_name,
epochs=epochs,
learning_rate=learning_rate,
output_model_path=f"ddi_model_{model_version}"
)
# Step 3: Register model
register_task = register_model(
model_path=training_task.output,
minio_endpoint=minio_endpoint,
minio_access_key=minio_access_key,
minio_secret_key=minio_secret_key,
model_name="ddi-detector",
version=model_version
)
if __name__ == "__main__":
compiler.Compiler().compile(
pipeline_func=ddi_training_pipeline,
package_path="ddi_training_runpod.yaml"
)
print("Pipeline compiled to ddi_training_runpod.yaml")