Greg Hendrickson 4ff491f847 feat: Use self-hosted runner + curated DDI dataset
- Switch to self-hosted runner on compute-01 for faster builds
- Replace PyTDC with curated DDI dataset (no heavy deps)
- 60+ real drug interaction patterns based on clinical guidelines
- Generates up to 10K training samples with text variations
- Maintains 5-level severity classification
2026-02-03 03:27:10 +00:00
2026-02-03 00:45:27 +00:00

Kubeflow Pipelines - GitOps Repository

This repository contains ML pipeline definitions managed via ArgoCD.

Structure

.
├── pipelines/           # Pipeline Python definitions
│   └── examples/        # Example pipelines
├── components/          # Reusable pipeline components
├── experiments/         # Experiment configurations
├── runs/               # Scheduled/triggered runs
└── manifests/          # K8s manifests for ArgoCD

Usage

  1. Add a pipeline: Create a Python file in pipelines/
  2. Push to main: ArgoCD auto-deploys
  3. Monitor: Check Kubeflow UI at <KUBEFLOW_URL>

Quick Start

from kfp import dsl

@dsl.component
def hello_world() -> str:
    return "Hello from Kubeflow!"

@dsl.pipeline(name="hello-pipeline")
def hello_pipeline():
    hello_world()

Environment

  • Kubeflow: <KUBEFLOW_URL>
  • MinIO: <MINIO_URL>
  • ArgoCD: <ARGOCD_URL>
Description
Languages
Python 99%
Dockerfile 1%