mirror of
https://github.com/ghndrx/kubeflow-pipelines.git
synced 2026-02-10 06:45:13 +00:00
67a1095100d43e0c6101f35a19393bea731f0cb8
- Downloaded 191K DDI pairs from TDC DrugBank - Fetched 1,634 drug names from PubChem API (96% hit rate) - Created complete training dataset with: - Real drug names (not just IDs) - 86 interaction type descriptions - Severity labels (minor/moderate/major/contraindicated) - Bundled 34MB data file in Docker image - Handler loads real data instead of curated samples
Kubeflow Pipelines - GitOps Repository
This repository contains ML pipeline definitions managed via ArgoCD.
Structure
.
├── pipelines/ # Pipeline Python definitions
│ └── examples/ # Example pipelines
├── components/ # Reusable pipeline components
├── experiments/ # Experiment configurations
├── runs/ # Scheduled/triggered runs
└── manifests/ # K8s manifests for ArgoCD
Usage
- Add a pipeline: Create a Python file in
pipelines/ - Push to main: ArgoCD auto-deploys
- Monitor: Check Kubeflow UI at <KUBEFLOW_URL>
Quick Start
from kfp import dsl
@dsl.component
def hello_world() -> str:
return "Hello from Kubeflow!"
@dsl.pipeline(name="hello-pipeline")
def hello_pipeline():
hello_world()
Environment
- Kubeflow: <KUBEFLOW_URL>
- MinIO: <MINIO_URL>
- ArgoCD: <ARGOCD_URL>
Languages
Python
99%
Dockerfile
1%