mirror of
https://github.com/ghndrx/kubeflow-pipelines.git
synced 2026-02-10 06:45:13 +00:00
9b66b5fd14a92b3340e0ccd8633fa01865c6b44d
- Use runpod/pytorch:1.0.3-cu1290-torch260-ubuntu2204 base image - Torch 2.6.0 required by transformers for secure model loading - CUDA 12.9 compatible
Kubeflow Pipelines - GitOps Repository
This repository contains ML pipeline definitions managed via ArgoCD.
Structure
.
├── pipelines/ # Pipeline Python definitions
│ └── examples/ # Example pipelines
├── components/ # Reusable pipeline components
├── experiments/ # Experiment configurations
├── runs/ # Scheduled/triggered runs
└── manifests/ # K8s manifests for ArgoCD
Usage
- Add a pipeline: Create a Python file in
pipelines/ - Push to main: ArgoCD auto-deploys
- Monitor: Check Kubeflow UI at <KUBEFLOW_URL>
Quick Start
from kfp import dsl
@dsl.component
def hello_world() -> str:
return "Hello from Kubeflow!"
@dsl.pipeline(name="hello-pipeline")
def hello_pipeline():
hello_world()
Environment
- Kubeflow: <KUBEFLOW_URL>
- MinIO: <MINIO_URL>
- ArgoCD: <ARGOCD_URL>
Languages
Python
99%
Dockerfile
1%