Greg Hendrickson afc8fc6690 feat: Add real DrugBank DDI dataset support via TDC
- Added PyTDC dependency for DrugBank access
- Implemented DDI type -> severity label mapping (0-4)
- Added train/eval split with stratification
- Added accuracy and F1 metrics for evaluation
- Default: 50K samples from DrugBank DDI
- Supports both real data and custom inline data
2026-02-03 02:48:31 +00:00
2026-02-03 00:45:27 +00:00

Kubeflow Pipelines - GitOps Repository

This repository contains ML pipeline definitions managed via ArgoCD.

Structure

.
├── pipelines/           # Pipeline Python definitions
│   └── examples/        # Example pipelines
├── components/          # Reusable pipeline components
├── experiments/         # Experiment configurations
├── runs/               # Scheduled/triggered runs
└── manifests/          # K8s manifests for ArgoCD

Usage

  1. Add a pipeline: Create a Python file in pipelines/
  2. Push to main: ArgoCD auto-deploys
  3. Monitor: Check Kubeflow UI at <KUBEFLOW_URL>

Quick Start

from kfp import dsl

@dsl.component
def hello_world() -> str:
    return "Hello from Kubeflow!"

@dsl.pipeline(name="hello-pipeline")
def hello_pipeline():
    hello_world()

Environment

  • Kubeflow: <KUBEFLOW_URL>
  • MinIO: <MINIO_URL>
  • ArgoCD: <ARGOCD_URL>
Description
Languages
Python 99%
Dockerfile 1%