mirror of
https://github.com/ghndrx/kubeflow-pipelines.git
synced 2026-02-10 06:45:13 +00:00
- Added PyTDC dependency for DrugBank access - Implemented DDI type -> severity label mapping (0-4) - Added train/eval split with stratification - Added accuracy and F1 metrics for evaluation - Default: 50K samples from DrugBank DDI - Supports both real data and custom inline data
317 lines
11 KiB
Python
317 lines
11 KiB
Python
"""
|
|
RunPod Serverless Handler for DDI Model Training
|
|
|
|
This runs on RunPod GPU instances and trains the Bio_ClinicalBERT model
|
|
for drug-drug interaction detection using real DrugBank data via TDC.
|
|
"""
|
|
import os
|
|
import json
|
|
import runpod
|
|
from typing import Dict, Any, List, Optional
|
|
|
|
|
|
# DrugBank DDI type mapping to severity categories
|
|
# TDC DrugBank has 86 interaction types - we map to 5 severity levels
|
|
DDI_SEVERITY_MAP = {
|
|
# 0 = No significant interaction / safe
|
|
'no known interaction': 0,
|
|
|
|
# 1 = Minor interaction (mechanism-based, low clinical impact)
|
|
'the metabolism of drug1 can be increased': 1,
|
|
'the metabolism of drug1 can be decreased': 1,
|
|
'the absorption of drug1 can be affected': 1,
|
|
'the bioavailability of drug1 can be affected': 1,
|
|
'drug1 may affect the excretion rate': 1,
|
|
|
|
# 2 = Moderate interaction (effect-based, monitor patient)
|
|
'the serum concentration of drug1 can be increased': 2,
|
|
'the serum concentration of drug1 can be decreased': 2,
|
|
'the therapeutic efficacy of drug1 can be decreased': 2,
|
|
'the therapeutic efficacy of drug1 can be increased': 2,
|
|
'the protein binding of drug1 can be affected': 2,
|
|
|
|
# 3 = Major interaction (significant risk, avoid if possible)
|
|
'the risk or severity of adverse effects can be increased': 3,
|
|
'the risk of bleeding can be increased': 3,
|
|
'the risk of hypotension can be increased': 3,
|
|
'the risk of hypertension can be increased': 3,
|
|
'the risk of hypoglycemia can be increased': 3,
|
|
'the risk of hyperglycemia can be increased': 3,
|
|
'the risk of QTc prolongation can be increased': 3,
|
|
'the risk of cardiotoxicity can be increased': 3,
|
|
'the risk of nephrotoxicity can be increased': 3,
|
|
'the risk of hepatotoxicity can be increased': 3,
|
|
|
|
# 4 = Contraindicated (avoid combination)
|
|
'the risk of serotonin syndrome can be increased': 4,
|
|
'the risk of rhabdomyolysis can be increased': 4,
|
|
'the risk of severe hypotension can be increased': 4,
|
|
'the risk of life-threatening arrhythmias can be increased': 4,
|
|
}
|
|
|
|
|
|
def get_severity_label(ddi_type: str) -> int:
|
|
"""Map DDI type string to severity label (0-4)."""
|
|
ddi_lower = ddi_type.lower()
|
|
|
|
# Check exact matches first
|
|
for pattern, label in DDI_SEVERITY_MAP.items():
|
|
if pattern in ddi_lower:
|
|
return label
|
|
|
|
# Default heuristics based on keywords
|
|
if any(x in ddi_lower for x in ['contraindicated', 'life-threatening', 'fatal', 'death']):
|
|
return 4
|
|
elif any(x in ddi_lower for x in ['severe', 'serious', 'major', 'toxic']):
|
|
return 3
|
|
elif any(x in ddi_lower for x in ['increased', 'decreased', 'risk', 'adverse']):
|
|
return 2
|
|
elif any(x in ddi_lower for x in ['may', 'can', 'affect', 'metabolism']):
|
|
return 1
|
|
else:
|
|
return 0 # Unknown/no interaction
|
|
|
|
|
|
def load_drugbank_ddi(max_samples: int = 50000) -> List[Dict[str, Any]]:
|
|
"""
|
|
Load DrugBank DDI dataset from TDC (Therapeutics Data Commons).
|
|
|
|
Returns list of {"text": "drug1 drug2 interaction_description", "label": severity}
|
|
"""
|
|
from tdc.multi_pred import DDI
|
|
import pandas as pd
|
|
|
|
print("Loading DrugBank DDI dataset from TDC...")
|
|
|
|
# Load the DrugBank DDI dataset
|
|
data = DDI(name='DrugBank')
|
|
df = data.get_data()
|
|
|
|
print(f"Total DDI pairs in DrugBank: {len(df)}")
|
|
|
|
# Sample if dataset is too large
|
|
if len(df) > max_samples:
|
|
print(f"Sampling {max_samples} examples...")
|
|
df = df.sample(n=max_samples, random_state=42)
|
|
|
|
# Convert to training format
|
|
training_data = []
|
|
for _, row in df.iterrows():
|
|
drug1 = row['Drug1']
|
|
drug2 = row['Drug2']
|
|
ddi_type = row['Y'] # Interaction type string
|
|
|
|
# Create text input
|
|
text = f"{drug1} {drug2} {ddi_type}"
|
|
|
|
# Map to severity label
|
|
label = get_severity_label(ddi_type)
|
|
|
|
training_data.append({
|
|
'text': text,
|
|
'label': label
|
|
})
|
|
|
|
# Log label distribution
|
|
label_counts = {}
|
|
for item in training_data:
|
|
label_counts[item['label']] = label_counts.get(item['label'], 0) + 1
|
|
|
|
print(f"Label distribution: {label_counts}")
|
|
print(f"Total training samples: {len(training_data)}")
|
|
|
|
return training_data
|
|
|
|
|
|
def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Train DDI detection model.
|
|
|
|
Expected input:
|
|
{
|
|
"model_name": "emilyalsentzer/Bio_ClinicalBERT",
|
|
"use_drugbank": true, # Use real DrugBank data
|
|
"max_samples": 50000, # Max samples to use
|
|
"training_data": [...], # Or provide inline data
|
|
"epochs": 3,
|
|
"learning_rate": 2e-5,
|
|
"batch_size": 16,
|
|
"eval_split": 0.1 # Validation split ratio
|
|
}
|
|
"""
|
|
import torch
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
AutoModelForSequenceClassification,
|
|
TrainingArguments,
|
|
Trainer
|
|
)
|
|
from datasets import Dataset
|
|
from sklearn.model_selection import train_test_split
|
|
import tempfile
|
|
import shutil
|
|
|
|
# Extract parameters
|
|
model_name = job_input.get('model_name', 'emilyalsentzer/Bio_ClinicalBERT')
|
|
use_drugbank = job_input.get('use_drugbank', True)
|
|
max_samples = job_input.get('max_samples', 50000)
|
|
training_data = job_input.get('training_data', None)
|
|
epochs = job_input.get('epochs', 3)
|
|
learning_rate = job_input.get('learning_rate', 2e-5)
|
|
batch_size = job_input.get('batch_size', 16)
|
|
eval_split = job_input.get('eval_split', 0.1)
|
|
|
|
# Load data
|
|
if use_drugbank and not training_data:
|
|
print("Loading real DrugBank DDI dataset...")
|
|
training_data = load_drugbank_ddi(max_samples=max_samples)
|
|
elif not training_data:
|
|
print("No training data provided, using sample DDI dataset...")
|
|
training_data = [
|
|
{"text": "warfarin aspirin the risk of bleeding can be increased", "label": 3},
|
|
{"text": "metformin lisinopril no known interaction", "label": 0},
|
|
{"text": "fluoxetine tramadol the risk of serotonin syndrome can be increased", "label": 4},
|
|
{"text": "simvastatin amiodarone the risk of rhabdomyolysis can be increased", "label": 4},
|
|
{"text": "omeprazole clopidogrel the therapeutic efficacy of drug1 can be decreased", "label": 2},
|
|
] * 30 # 150 samples
|
|
|
|
# Create temp directory
|
|
work_dir = tempfile.mkdtemp()
|
|
model_dir = os.path.join(work_dir, 'model')
|
|
|
|
try:
|
|
print(f"Training samples: {len(training_data)}")
|
|
print(f"Model: {model_name}")
|
|
print(f"Epochs: {epochs}, Batch size: {batch_size}")
|
|
print(f"GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'}")
|
|
|
|
# Split into train/eval
|
|
if eval_split > 0 and len(training_data) > 100:
|
|
train_data, eval_data = train_test_split(
|
|
training_data,
|
|
test_size=eval_split,
|
|
random_state=42,
|
|
stratify=[d['label'] for d in training_data]
|
|
)
|
|
print(f"Train: {len(train_data)}, Eval: {len(eval_data)}")
|
|
else:
|
|
train_data = training_data
|
|
eval_data = None
|
|
|
|
# Create datasets
|
|
train_dataset = Dataset.from_list(train_data)
|
|
eval_dataset = Dataset.from_list(eval_data) if eval_data else None
|
|
|
|
# Load model and tokenizer
|
|
print(f"Loading model: {model_name}")
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
model_name,
|
|
num_labels=5 # DDI severity: none(0), minor(1), moderate(2), major(3), contraindicated(4)
|
|
)
|
|
|
|
# Tokenize datasets
|
|
def tokenize_function(examples):
|
|
return tokenizer(
|
|
examples['text'],
|
|
padding='max_length',
|
|
truncation=True,
|
|
max_length=256 # Longer for drug names + interaction text
|
|
)
|
|
|
|
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
|
tokenized_eval = eval_dataset.map(tokenize_function, batched=True) if eval_dataset else None
|
|
|
|
# Training arguments
|
|
training_args = TrainingArguments(
|
|
output_dir=model_dir,
|
|
num_train_epochs=epochs,
|
|
learning_rate=learning_rate,
|
|
per_device_train_batch_size=batch_size,
|
|
per_device_eval_batch_size=batch_size,
|
|
warmup_ratio=0.1,
|
|
weight_decay=0.01,
|
|
logging_steps=50,
|
|
eval_strategy='epoch' if tokenized_eval else 'no',
|
|
save_strategy='no', # Don't save checkpoints
|
|
fp16=torch.cuda.is_available(),
|
|
report_to='none',
|
|
load_best_model_at_end=False,
|
|
)
|
|
|
|
# Compute metrics function
|
|
def compute_metrics(eval_pred):
|
|
from sklearn.metrics import accuracy_score, f1_score
|
|
predictions, labels = eval_pred
|
|
predictions = predictions.argmax(-1)
|
|
return {
|
|
'accuracy': accuracy_score(labels, predictions),
|
|
'f1_macro': f1_score(labels, predictions, average='macro'),
|
|
'f1_weighted': f1_score(labels, predictions, average='weighted'),
|
|
}
|
|
|
|
# Initialize trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_train,
|
|
eval_dataset=tokenized_eval,
|
|
compute_metrics=compute_metrics if tokenized_eval else None,
|
|
)
|
|
|
|
# Train
|
|
print("Starting training...")
|
|
train_result = trainer.train()
|
|
|
|
# Get metrics
|
|
metrics = {
|
|
'train_loss': float(train_result.training_loss),
|
|
'epochs': epochs,
|
|
'model_name': model_name,
|
|
'samples': len(train_data),
|
|
'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU',
|
|
'data_source': 'DrugBank' if use_drugbank else 'custom'
|
|
}
|
|
|
|
# Run evaluation if we have eval data
|
|
if tokenized_eval:
|
|
print("Running evaluation...")
|
|
eval_result = trainer.evaluate()
|
|
metrics.update({
|
|
'eval_loss': float(eval_result['eval_loss']),
|
|
'eval_accuracy': float(eval_result['eval_accuracy']),
|
|
'eval_f1_macro': float(eval_result['eval_f1_macro']),
|
|
'eval_f1_weighted': float(eval_result['eval_f1_weighted']),
|
|
})
|
|
|
|
print(f"Training complete! Loss: {metrics['train_loss']:.4f}")
|
|
if 'eval_accuracy' in metrics:
|
|
print(f"Eval accuracy: {metrics['eval_accuracy']:.4f}, F1: {metrics['eval_f1_weighted']:.4f}")
|
|
|
|
return {
|
|
'status': 'success',
|
|
'metrics': metrics,
|
|
'message': 'Model trained successfully on DrugBank DDI data'
|
|
}
|
|
|
|
except Exception as e:
|
|
import traceback
|
|
return {
|
|
'status': 'error',
|
|
'error': str(e),
|
|
'traceback': traceback.format_exc()
|
|
}
|
|
finally:
|
|
# Cleanup
|
|
shutil.rmtree(work_dir, ignore_errors=True)
|
|
|
|
|
|
def handler(job):
|
|
"""RunPod serverless handler."""
|
|
job_input = job.get('input', {})
|
|
return train_ddi_model(job_input)
|
|
|
|
|
|
# RunPod serverless entrypoint
|
|
runpod.serverless.start({'handler': handler})
|