mirror of
https://github.com/ghndrx/kubeflow-pipelines.git
synced 2026-02-10 06:45:13 +00:00
256 lines
7.8 KiB
Python
256 lines
7.8 KiB
Python
"""
|
|
DDI Training Pipeline with RunPod GPU
|
|
|
|
Fully automated pipeline that:
|
|
1. Preprocesses CCDA/FHIR clinical data
|
|
2. Uploads to MinIO
|
|
3. Triggers RunPod serverless GPU training
|
|
4. Evaluates and registers the model
|
|
"""
|
|
import os
|
|
from kfp import dsl
|
|
from kfp import compiler
|
|
|
|
|
|
@dsl.component(
|
|
base_image="python:3.11-slim",
|
|
packages_to_install=["boto3", "requests"]
|
|
)
|
|
def create_sample_dataset(
|
|
minio_endpoint: str,
|
|
minio_access_key: str,
|
|
minio_secret_key: str,
|
|
output_path: str = "ddi_train.json"
|
|
) -> str:
|
|
"""Create a sample DDI training dataset for testing."""
|
|
import json
|
|
import boto3
|
|
|
|
# Sample DDI training data (drug pairs with interaction labels)
|
|
# Labels: 0=none, 1=minor, 2=moderate, 3=major, 4=contraindicated
|
|
sample_data = [
|
|
{"text": "Patient taking warfarin and aspirin together", "label": 3},
|
|
{"text": "Metformin administered with lisinopril", "label": 0},
|
|
{"text": "Concurrent use of simvastatin and amiodarone", "label": 3},
|
|
{"text": "Patient prescribed omeprazole with clopidogrel", "label": 2},
|
|
{"text": "Fluoxetine and tramadol co-administration", "label": 4},
|
|
{"text": "Atorvastatin given with diltiazem", "label": 2},
|
|
{"text": "Methotrexate and NSAIDs used together", "label": 3},
|
|
{"text": "Levothyroxine taken with calcium supplements", "label": 1},
|
|
{"text": "Ciprofloxacin and theophylline interaction", "label": 3},
|
|
{"text": "ACE inhibitor with potassium supplement", "label": 2},
|
|
# Add more samples for better training
|
|
{"text": "Digoxin and amiodarone combination therapy", "label": 3},
|
|
{"text": "SSRIs with MAO inhibitors", "label": 4},
|
|
{"text": "Lithium and ACE inhibitors together", "label": 3},
|
|
{"text": "Benzodiazepines with opioids", "label": 4},
|
|
{"text": "Metronidazole and alcohol consumption", "label": 4},
|
|
]
|
|
|
|
# Upload to MinIO
|
|
s3 = boto3.client(
|
|
's3',
|
|
endpoint_url=minio_endpoint,
|
|
aws_access_key_id=minio_access_key,
|
|
aws_secret_access_key=minio_secret_key,
|
|
region_name='us-east-1'
|
|
)
|
|
|
|
data_json = json.dumps(sample_data)
|
|
s3.put_object(
|
|
Bucket='datasets',
|
|
Key=output_path,
|
|
Body=data_json.encode('utf-8'),
|
|
ContentType='application/json'
|
|
)
|
|
|
|
print(f"Uploaded sample dataset to datasets/{output_path}")
|
|
return output_path
|
|
|
|
|
|
@dsl.component(
|
|
base_image="python:3.11-slim",
|
|
packages_to_install=["requests"]
|
|
)
|
|
def trigger_runpod_training(
|
|
runpod_api_key: str,
|
|
runpod_endpoint_id: str,
|
|
minio_endpoint: str,
|
|
minio_access_key: str,
|
|
minio_secret_key: str,
|
|
dataset_path: str,
|
|
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
|
|
epochs: int = 3,
|
|
learning_rate: float = 2e-5,
|
|
output_model_path: str = "ddi_model_v1"
|
|
) -> str:
|
|
"""Trigger RunPod serverless training job."""
|
|
import requests
|
|
import json
|
|
import time
|
|
|
|
# RunPod API endpoint
|
|
url = f"https://api.runpod.ai/v2/{runpod_endpoint_id}/runsync"
|
|
|
|
headers = {
|
|
"Authorization": f"Bearer {runpod_api_key}",
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
payload = {
|
|
"input": {
|
|
"model_name": model_name,
|
|
"dataset_path": dataset_path,
|
|
"epochs": epochs,
|
|
"learning_rate": learning_rate,
|
|
"batch_size": 16,
|
|
"output_path": output_model_path,
|
|
# MinIO credentials for the worker
|
|
"minio_endpoint": minio_endpoint,
|
|
"minio_access_key": minio_access_key,
|
|
"minio_secret_key": minio_secret_key
|
|
}
|
|
}
|
|
|
|
print(f"Triggering RunPod training job...")
|
|
print(f"Model: {model_name}")
|
|
print(f"Dataset: {dataset_path}")
|
|
print(f"Epochs: {epochs}")
|
|
|
|
response = requests.post(url, headers=headers, json=payload, timeout=3600)
|
|
result = response.json()
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(f"RunPod API error: {result}")
|
|
|
|
if result.get('status') == 'FAILED':
|
|
raise Exception(f"Training failed: {result.get('error')}")
|
|
|
|
output = result.get('output', {})
|
|
print(f"Training complete!")
|
|
print(f"Model path: {output.get('model_path')}")
|
|
print(f"Metrics: {output.get('metrics')}")
|
|
|
|
return output.get('model_path', f"s3://models/{output_model_path}")
|
|
|
|
|
|
@dsl.component(
|
|
base_image="python:3.11-slim",
|
|
packages_to_install=["boto3"]
|
|
)
|
|
def register_model(
|
|
model_path: str,
|
|
minio_endpoint: str,
|
|
minio_access_key: str,
|
|
minio_secret_key: str,
|
|
model_name: str = "ddi-detector",
|
|
version: str = "v1"
|
|
) -> str:
|
|
"""Register the trained model in the model registry."""
|
|
import boto3
|
|
import json
|
|
from datetime import datetime
|
|
|
|
s3 = boto3.client(
|
|
's3',
|
|
endpoint_url=minio_endpoint,
|
|
aws_access_key_id=minio_access_key,
|
|
aws_secret_access_key=minio_secret_key,
|
|
region_name='us-east-1'
|
|
)
|
|
|
|
# Create model registry entry
|
|
registry_entry = {
|
|
"name": model_name,
|
|
"version": version,
|
|
"path": model_path,
|
|
"created_at": datetime.utcnow().isoformat(),
|
|
"framework": "transformers",
|
|
"task": "sequence-classification",
|
|
"labels": ["none", "minor", "moderate", "major", "contraindicated"]
|
|
}
|
|
|
|
registry_key = f"registry/{model_name}/{version}/metadata.json"
|
|
s3.put_object(
|
|
Bucket='models',
|
|
Key=registry_key,
|
|
Body=json.dumps(registry_entry).encode('utf-8'),
|
|
ContentType='application/json'
|
|
)
|
|
|
|
print(f"Model registered: {model_name} v{version}")
|
|
print(f"Registry path: models/{registry_key}")
|
|
|
|
return f"models/{registry_key}"
|
|
|
|
|
|
@dsl.pipeline(
|
|
name="ddi-training-runpod",
|
|
description="Train DDI detection model using RunPod serverless GPU"
|
|
)
|
|
def ddi_training_pipeline(
|
|
# RunPod settings
|
|
runpod_endpoint_id: str = "YOUR_ENDPOINT_ID",
|
|
|
|
# Model settings
|
|
model_name: str = "emilyalsentzer/Bio_ClinicalBERT",
|
|
epochs: int = 3,
|
|
learning_rate: float = 2e-5,
|
|
model_version: str = "v1",
|
|
|
|
# MinIO settings - internal for now. For Tailscale, add ACL: tag:k8s → tagged-devices:*
|
|
minio_endpoint: str = "http://minio.minio.svc.cluster.local:9000",
|
|
):
|
|
"""
|
|
Full DDI training pipeline:
|
|
1. Create/upload sample dataset
|
|
2. Trigger RunPod GPU training
|
|
3. Register trained model
|
|
"""
|
|
import os
|
|
|
|
# These would come from k8s secrets in production
|
|
minio_access_key = "minioadmin"
|
|
minio_secret_key = "minioadmin123!"
|
|
runpod_api_key = os.environ.get("RUNPOD_API_KEY", "")
|
|
|
|
# Step 1: Create sample dataset
|
|
dataset_task = create_sample_dataset(
|
|
minio_endpoint=minio_endpoint,
|
|
minio_access_key=minio_access_key,
|
|
minio_secret_key=minio_secret_key,
|
|
output_path=f"ddi_train_{model_version}.json"
|
|
)
|
|
|
|
# Step 2: Trigger RunPod training
|
|
training_task = trigger_runpod_training(
|
|
runpod_api_key=runpod_api_key,
|
|
runpod_endpoint_id=runpod_endpoint_id,
|
|
minio_endpoint=minio_endpoint,
|
|
minio_access_key=minio_access_key,
|
|
minio_secret_key=minio_secret_key,
|
|
dataset_path=dataset_task.output,
|
|
model_name=model_name,
|
|
epochs=epochs,
|
|
learning_rate=learning_rate,
|
|
output_model_path=f"ddi_model_{model_version}"
|
|
)
|
|
|
|
# Step 3: Register model
|
|
register_task = register_model(
|
|
model_path=training_task.output,
|
|
minio_endpoint=minio_endpoint,
|
|
minio_access_key=minio_access_key,
|
|
minio_secret_key=minio_secret_key,
|
|
model_name="ddi-detector",
|
|
version=model_version
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
compiler.Compiler().compile(
|
|
pipeline_func=ddi_training_pipeline,
|
|
package_path="ddi_training_runpod.yaml"
|
|
)
|
|
print("Pipeline compiled to ddi_training_runpod.yaml")
|