Files
kubeflow-pipelines/components/runpod_trainer/handler.py

184 lines
5.5 KiB
Python

"""
RunPod Serverless Handler for DDI Model Training
This runs on RunPod GPU instances and trains the Bio_ClinicalBERT model
for drug-drug interaction detection.
"""
import os
import json
import runpod
from typing import Dict, Any
def download_from_minio(bucket: str, key: str, local_path: str):
"""Download file from MinIO."""
import boto3
s3 = boto3.client(
's3',
endpoint_url=os.environ['MINIO_ENDPOINT'],
aws_access_key_id=os.environ['MINIO_ACCESS_KEY'],
aws_secret_access_key=os.environ['MINIO_SECRET_KEY']
)
s3.download_file(bucket, key, local_path)
def upload_to_minio(local_path: str, bucket: str, key: str):
"""Upload file to MinIO."""
import boto3
s3 = boto3.client(
's3',
endpoint_url=os.environ['MINIO_ENDPOINT'],
aws_access_key_id=os.environ['MINIO_ACCESS_KEY'],
aws_secret_access_key=os.environ['MINIO_SECRET_KEY']
)
s3.upload_file(local_path, bucket, key)
def train_ddi_model(job_input: Dict[str, Any]) -> Dict[str, Any]:
"""
Train DDI detection model.
Expected input:
{
"model_name": "emilyalsentzer/Bio_ClinicalBERT",
"dataset_path": "datasets/ddi_train.json",
"epochs": 3,
"learning_rate": 2e-5,
"batch_size": 16,
"output_path": "models/ddi_model_v1"
}
"""
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
TrainingArguments,
Trainer
)
from datasets import Dataset
import tempfile
import shutil
# Extract parameters
model_name = job_input.get('model_name', 'emilyalsentzer/Bio_ClinicalBERT')
dataset_path = job_input.get('dataset_path', 'datasets/ddi_train.json')
epochs = job_input.get('epochs', 3)
learning_rate = job_input.get('learning_rate', 2e-5)
batch_size = job_input.get('batch_size', 16)
output_path = job_input.get('output_path', 'models/ddi_model')
# Create temp directory
work_dir = tempfile.mkdtemp()
data_file = os.path.join(work_dir, 'train.json')
model_dir = os.path.join(work_dir, 'model')
try:
# Download training data from MinIO
print(f"Downloading dataset from {dataset_path}...")
download_from_minio('datasets', dataset_path, data_file)
# Load dataset
with open(data_file, 'r') as f:
train_data = json.load(f)
dataset = Dataset.from_list(train_data)
# Load model and tokenizer
print(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=5 # DDI severity levels: none, minor, moderate, major, contraindicated
)
# Tokenize dataset
def tokenize_function(examples):
return tokenizer(
examples['text'],
padding='max_length',
truncation=True,
max_length=512
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Training arguments
training_args = TrainingArguments(
output_dir=model_dir,
num_train_epochs=epochs,
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_steps=100,
weight_decay=0.01,
logging_dir=os.path.join(work_dir, 'logs'),
logging_steps=10,
save_strategy='epoch',
evaluation_strategy='epoch' if 'validation' in train_data else 'no',
load_best_model_at_end=True if 'validation' in train_data else False,
fp16=torch.cuda.is_available(),
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
# Train
print("Starting training...")
train_result = trainer.train()
# Save model
print("Saving model...")
trainer.save_model(model_dir)
tokenizer.save_pretrained(model_dir)
# Save training metrics
metrics = {
'train_loss': train_result.training_loss,
'epochs': epochs,
'model_name': model_name,
'samples': len(dataset)
}
with open(os.path.join(model_dir, 'metrics.json'), 'w') as f:
json.dump(metrics, f)
# Upload model to MinIO
print(f"Uploading model to {output_path}...")
for root, dirs, files in os.walk(model_dir):
for file in files:
local_file = os.path.join(root, file)
relative_path = os.path.relpath(local_file, model_dir)
minio_key = f"{output_path}/{relative_path}"
upload_to_minio(local_file, 'models', minio_key)
return {
'status': 'success',
'model_path': f"s3://models/{output_path}",
'metrics': metrics
}
except Exception as e:
return {
'status': 'error',
'error': str(e)
}
finally:
# Cleanup
shutil.rmtree(work_dir, ignore_errors=True)
def handler(job):
"""RunPod serverless handler."""
job_input = job['input']
return train_ddi_model(job_input)
# RunPod serverless entrypoint
runpod.serverless.start({'handler': handler})