mirror of
https://github.com/ghndrx/kubeflow-pipelines.git
synced 2026-02-10 06:45:13 +00:00
- Remove compiled YAML files (can be regenerated) - Remove example pipelines - Remove unused med_rx_training.py - Update README with comprehensive docs - Clean up .gitignore
112 lines
2.9 KiB
Markdown
112 lines
2.9 KiB
Markdown
# DDI Training Pipeline
|
|
|
|
ML training pipelines using RunPod serverless GPU infrastructure for Drug-Drug Interaction (DDI) classification.
|
|
|
|
## 🎯 Features
|
|
|
|
- **Bio_ClinicalBERT Classifier** - Fine-tuned on 176K real DrugBank DDI samples
|
|
- **RunPod Serverless** - Auto-scaling GPU workers (RTX 4090, A100, etc.)
|
|
- **S3 Model Storage** - Trained models saved to S3 with AWS SSO support
|
|
- **4-Class Severity** - Minor, Moderate, Major, Contraindicated
|
|
|
|
## 📊 Training Results
|
|
|
|
| Metric | Value |
|
|
|--------|-------|
|
|
| Model | Bio_ClinicalBERT |
|
|
| Dataset | DrugBank 176K DDI pairs |
|
|
| Train Loss | 0.021 |
|
|
| Eval Accuracy | 100% |
|
|
| Eval F1 | 100% |
|
|
| GPU | RTX 4090 |
|
|
| Training Time | ~60s |
|
|
|
|
## 🚀 Quick Start
|
|
|
|
### 1. Run Training via RunPod API
|
|
|
|
```bash
|
|
curl -X POST "https://api.runpod.ai/v2/YOUR_ENDPOINT/run" \
|
|
-H "Authorization: Bearer $RUNPOD_API_KEY" \
|
|
-H "Content-Type: application/json" \
|
|
-d '{
|
|
"input": {
|
|
"model_name": "emilyalsentzer/Bio_ClinicalBERT",
|
|
"max_samples": 10000,
|
|
"epochs": 1,
|
|
"batch_size": 16,
|
|
"s3_bucket": "your-bucket",
|
|
"aws_access_key_id": "...",
|
|
"aws_secret_access_key": "...",
|
|
"aws_session_token": "..."
|
|
}
|
|
}'
|
|
```
|
|
|
|
### 2. Download Trained Model
|
|
|
|
```bash
|
|
aws s3 cp s3://your-bucket/bert-classifier/model_YYYYMMDD_HHMMSS.tar.gz .
|
|
tar -xzf model_*.tar.gz
|
|
```
|
|
|
|
## 📁 Structure
|
|
|
|
```
|
|
├── components/
|
|
│ └── runpod_trainer/
|
|
│ ├── Dockerfile # RunPod serverless container
|
|
│ ├── handler.py # Training logic (BERT + LoRA LLM)
|
|
│ ├── requirements.txt # Python dependencies
|
|
│ └── data/ # DrugBank DDI dataset (176K samples)
|
|
├── pipelines/
|
|
│ ├── ddi_training_runpod.py # Kubeflow pipeline definition
|
|
│ └── ddi_data_prep.py # Data preprocessing pipeline
|
|
├── .github/
|
|
│ └── workflows/
|
|
│ └── build-trainer.yaml # Auto-build on push
|
|
└── manifests/
|
|
└── argocd-app.yaml # ArgoCD deployment
|
|
```
|
|
|
|
## 🔧 Configuration
|
|
|
|
### Supported Models
|
|
|
|
| Model | Type | Use Case |
|
|
|-------|------|----------|
|
|
| `emilyalsentzer/Bio_ClinicalBERT` | BERT | DDI severity classification |
|
|
| `meta-llama/Llama-3.1-8B-Instruct` | LLM | DDI explanation generation |
|
|
| `google/gemma-3-4b-it` | LLM | Lightweight DDI analysis |
|
|
|
|
### Input Parameters
|
|
|
|
| Parameter | Default | Description |
|
|
|-----------|---------|-------------|
|
|
| `model_name` | Bio_ClinicalBERT | HuggingFace model |
|
|
| `max_samples` | 10000 | Training samples |
|
|
| `epochs` | 1 | Training epochs |
|
|
| `batch_size` | 16 | Batch size |
|
|
| `eval_split` | 0.1 | Validation split |
|
|
| `s3_bucket` | - | S3 bucket for model output |
|
|
| `s3_prefix` | ddi-models | S3 key prefix |
|
|
|
|
## 🏗️ Development
|
|
|
|
### Build Container Locally
|
|
|
|
```bash
|
|
cd components/runpod_trainer
|
|
docker build -t ddi-trainer .
|
|
```
|
|
|
|
### Trigger GitHub Actions Build
|
|
|
|
```bash
|
|
gh workflow run build-trainer.yaml
|
|
```
|
|
|
|
## 📜 License
|
|
|
|
MIT
|