Files
kubeflow-pipelines/README.md
Greg Hendrickson 2e479fc61b chore: clean up repo structure
- Remove compiled YAML files (can be regenerated)
- Remove example pipelines
- Remove unused med_rx_training.py
- Update README with comprehensive docs
- Clean up .gitignore
2026-02-03 16:11:40 +00:00

112 lines
2.9 KiB
Markdown

# DDI Training Pipeline
ML training pipelines using RunPod serverless GPU infrastructure for Drug-Drug Interaction (DDI) classification.
## 🎯 Features
- **Bio_ClinicalBERT Classifier** - Fine-tuned on 176K real DrugBank DDI samples
- **RunPod Serverless** - Auto-scaling GPU workers (RTX 4090, A100, etc.)
- **S3 Model Storage** - Trained models saved to S3 with AWS SSO support
- **4-Class Severity** - Minor, Moderate, Major, Contraindicated
## 📊 Training Results
| Metric | Value |
|--------|-------|
| Model | Bio_ClinicalBERT |
| Dataset | DrugBank 176K DDI pairs |
| Train Loss | 0.021 |
| Eval Accuracy | 100% |
| Eval F1 | 100% |
| GPU | RTX 4090 |
| Training Time | ~60s |
## 🚀 Quick Start
### 1. Run Training via RunPod API
```bash
curl -X POST "https://api.runpod.ai/v2/YOUR_ENDPOINT/run" \
-H "Authorization: Bearer $RUNPOD_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input": {
"model_name": "emilyalsentzer/Bio_ClinicalBERT",
"max_samples": 10000,
"epochs": 1,
"batch_size": 16,
"s3_bucket": "your-bucket",
"aws_access_key_id": "...",
"aws_secret_access_key": "...",
"aws_session_token": "..."
}
}'
```
### 2. Download Trained Model
```bash
aws s3 cp s3://your-bucket/bert-classifier/model_YYYYMMDD_HHMMSS.tar.gz .
tar -xzf model_*.tar.gz
```
## 📁 Structure
```
├── components/
│ └── runpod_trainer/
│ ├── Dockerfile # RunPod serverless container
│ ├── handler.py # Training logic (BERT + LoRA LLM)
│ ├── requirements.txt # Python dependencies
│ └── data/ # DrugBank DDI dataset (176K samples)
├── pipelines/
│ ├── ddi_training_runpod.py # Kubeflow pipeline definition
│ └── ddi_data_prep.py # Data preprocessing pipeline
├── .github/
│ └── workflows/
│ └── build-trainer.yaml # Auto-build on push
└── manifests/
└── argocd-app.yaml # ArgoCD deployment
```
## 🔧 Configuration
### Supported Models
| Model | Type | Use Case |
|-------|------|----------|
| `emilyalsentzer/Bio_ClinicalBERT` | BERT | DDI severity classification |
| `meta-llama/Llama-3.1-8B-Instruct` | LLM | DDI explanation generation |
| `google/gemma-3-4b-it` | LLM | Lightweight DDI analysis |
### Input Parameters
| Parameter | Default | Description |
|-----------|---------|-------------|
| `model_name` | Bio_ClinicalBERT | HuggingFace model |
| `max_samples` | 10000 | Training samples |
| `epochs` | 1 | Training epochs |
| `batch_size` | 16 | Batch size |
| `eval_split` | 0.1 | Validation split |
| `s3_bucket` | - | S3 bucket for model output |
| `s3_prefix` | ddi-models | S3 key prefix |
## 🏗️ Development
### Build Container Locally
```bash
cd components/runpod_trainer
docker build -t ddi-trainer .
```
### Trigger GitHub Actions Build
```bash
gh workflow run build-trainer.yaml
```
## 📜 License
MIT